Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nucleic Acids Res ; 51(D1): D368-D376, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36478084

RESUMO

The Biological Magnetic Resonance Data Bank (BMRB, https://bmrb.io) is the international open data repository for biomolecular nuclear magnetic resonance (NMR) data. Comprised of both empirical and derived data, BMRB has applications in the study of biomacromolecular structure and dynamics, biomolecular interactions, drug discovery, intrinsically disordered proteins, natural products, biomarkers, and metabolomics. Advances including GHz-class NMR instruments, national and trans-national NMR cyberinfrastructure, hybrid structural biology methods and machine learning are driving increases in the amount, type, and applications of NMR data in the biosciences. BMRB is a Core Archive and member of the World-wide Protein Data Bank (wwPDB).


Assuntos
Bases de Dados de Compostos Químicos , Espectroscopia de Ressonância Magnética , Bases de Dados de Proteínas , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
2.
Metabolomics ; 20(2): 41, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480600

RESUMO

BACKGROUND: The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse. AIM OF REVIEW: The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies. KEY SCIENTIFIC CONCEPTS OF REVIEW: We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Automação
3.
BMC Genomics ; 22(1): 322, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941086

RESUMO

BACKGROUND: RNA sequencing analysis focus on the detection of differential gene expression changes that meet a two-fold minimum change between groups. The variability present in RNA sequencing data may obscure the detection of valuable information when specific genes within certain samples display large expression variability. This paper develops methods that apply variance and dispersion estimates to intra-group data to identify genes with expression values that diverge from the group envelope. STRING database analysis of the identified genes characterize gene affiliations involved in physiological regulatory networks that contribute to biological variability. Individuals with divergent gene groupings within network pathways can thereby be identified and judiciously evaluated prior to standard differential analysis. RESULTS: A three-step process is presented for evaluating biological variability within a group in RNA sequencing data in which gene counts were: (1) scaled to minimize heteroscedasticity; (2) rank-ordered to detect potentially divergent "trendlines" for every gene in the data set; and (3) tested with the STRING database to identify statistically significant pathway associations among the genes displaying marked trendline variability and dispersion. This approach was used to identify the "trendline" profile of every gene in three test data sets. Control data from an in-house data set and two archived samples revealed that 65-70% of the sequenced genes displayed trendlines with minimal variation and dispersion across the sample group after rank-ordering the samples; this is referred to as a linear trendline. Smaller subsets of genes within the three data sets displayed markedly skewed trendlines, wide dispersion and variability. STRING database analysis of these genes identified interferon-mediated response networks in 11-20% of the individuals sampled at the time of blood collection. For example, in the three control data sets, 14 to 26 genes in the defense response to virus pathway were identified in 7 individuals at false discovery rates ≤1.92 E-15. CONCLUSIONS: This analysis provides a rationale for identifying and characterizing notable gene expression variability within a study group. The identification of highly variable genes and their network associations within specific individuals empowers more judicious inspection of the sample group prior to differential gene expression analysis.


Assuntos
Perfilação da Expressão Gênica , RNA , Humanos , Análise de Sequência de RNA , Sequenciamento do Exoma
4.
J Biomol NMR ; 73(5): 213-222, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31165321

RESUMO

Various methods for understanding the structural and dynamic properties of proteins rely on the analysis of their NMR chemical shifts. These methods require the initial assignment of NMR signals to particular atoms in the sequence of the protein, a step that can be very time-consuming. The probabilistic interaction network of evidence (PINE) algorithm for automated assignment of backbone and side chain chemical shifts utilizes a Bayesian probabilistic network model that analyzes sequence data and peak lists from multiple NMR experiments. PINE, which is one of the most popular and reliable automated chemical shift assignment algorithms, has been available to the protein NMR community for longer than a decade. We announce here a new web server version of PINE, called Integrative PINE (I-PINE), which supports more types of NMR experiments than PINE (including three-dimensional nuclear Overhauser enhancement and four-dimensional J-coupling experiments) along with more comprehensive visualization of chemical shift based analysis of protein structure and dynamics. The I-PINE server is freely accessible at http://i-pine.nmrfam.wisc.edu . Help pages and tutorial including browser capability are available at: http://i-pine.nmrfam.wisc.edu/instruction.html . Sample data that can be used for testing the web server are available at: http://i-pine.nmrfam.wisc.edu/examples.html .


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Algoritmos , Proteínas/análise
5.
J Biomol NMR ; 73(1-2): 5-9, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30580387

RESUMO

The growth of the biological nuclear magnetic resonance (NMR) field and the development of new experimental technology have mandated the revision and enlargement of the NMR-STAR ontology used to represent experiments, spectral and derived data, and supporting metadata. We present here a brief description of the NMR-STAR ontology and software tools for manipulating NMR-STAR data files, editing the files, extracting selected data, and creating data visualizations. Detailed information on these is accessible from the links provided.


Assuntos
Ontologias Biológicas , Ressonância Magnética Nuclear Biomolecular , Armazenamento e Recuperação da Informação , Software , Vocabulário Controlado
6.
Anal Chem ; 90(18): 10646-10649, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30125102

RESUMO

We have developed technology for producing accurate spectral fingerprints of small molecules through modeling of NMR spin system matrices to encapsulate their chemical shifts and scalar couplings. We describe here how libraries of these spin systems utilizing unique and reproducible atom numbering can be used to improve NMR-based ligand screening and metabolomics studies. We introduce new Web services that facilitate the analysis of NMR spectra of mixtures of small molecules to yield their identification and quantification. The library of parametrized compounds has been expanded to cover simulations of 1H NMR spectra at a variety of magnetic fields of more than 1100 compounds, included are many common metabolites and a library of drug-like molecular fragments used in ligand screening. The compound library and related Web services are freely available from http://gissmo.nmrfam.wisc.edu/ .

7.
Magn Reson Chem ; 56(8): 703-715, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29656574

RESUMO

Even though NMR has found countless applications in the field of small molecule characterization, there is no standard file format available for the NMR data relevant to structure characterization of small molecules. A new format is therefore introduced to associate the NMR parameters extracted from 1D and 2D spectra of organic compounds to the proposed chemical structure. These NMR parameters, which we shall call NMReDATA (for nuclear magnetic resonance extracted data), include chemical shift values, signal integrals, intensities, multiplicities, scalar coupling constants, lists of 2D correlations, relaxation times, and diffusion rates. The file format is an extension of the existing Structure Data Format, which is compatible with the commonly used MOL format. The association of an NMReDATA file with the raw and spectral data from which it originates constitutes an NMR record. This format is easily readable by humans and computers and provides a simple and efficient way for disseminating results of structural chemistry investigations, allowing automatic verification of published results, and for assisting the constitution of highly needed open-source structural databases.


Assuntos
Armazenamento e Recuperação da Informação/normas , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Compostos Orgânicos/química , Bases de Dados de Compostos Químicos/estatística & dados numéricos , Software/normas
8.
Biophys J ; 112(8): 1529-1534, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445744

RESUMO

Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Software , Acesso à Informação , Teorema de Bayes , Computação em Nuvem , Internet , Metadados
9.
Anal Chem ; 89(22): 12201-12208, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29058410

RESUMO

The exceptionally rich information content of nuclear magnetic resonance (NMR) spectra is routinely used to identify and characterize molecules and molecular interactions in a wide range of applications, including clinical biomarker discovery, drug discovery, environmental chemistry, and metabolomics. The set of peak positions and intensities from a reference NMR spectrum generally serves as the identifying signature for a compound. Reference spectra normally are collected under specific conditions of pH, temperature, and magnetic field strength, because changes in conditions can distort the identifying signatures of compounds. A spin system matrix that parametrizes chemical shifts and coupling constants among spins provides a much richer feature set for a compound than a spectral signature based on peak positions and intensities. Spin system matrices expand the applicability of NMR spectral libraries beyond the specific conditions under which data were collected. In addition to being able to simulate spectra at any field strength, spin parameters can be adjusted to systematically explore alterations in chemical shift patterns due to variations in other experimental conditions, such as compound concentration, pH, or temperature. We present methodology and software for efficient interactive optimization of spin parameters against experimental 1D-1H NMR spectra of small molecules. We have used the software to generate spin system matrices for a set of key mammalian metabolites and are also using the software to parametrize spectra of small molecules used in NMR-based ligand screening. The software, along with optimized spin system matrix data for a growing number of compounds, is available from http://gissmo.nmrfam.wisc.edu/ .


Assuntos
Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Bibliotecas de Moléculas Pequenas/análise , Concentração de Íons de Hidrogênio , Ligantes , Bibliotecas de Moléculas Pequenas/metabolismo , Software , Temperatura
10.
J Proteome Res ; 15(4): 1360-8, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26965640

RESUMO

NMR ligand affinity screening is a powerful technique that is routinely used in drug discovery or functional genomics to directly detect protein-ligand binding events. Binding events can be identified by monitoring differences in the 1D (1)H NMR spectrum of a compound with and without protein. Although a single NMR spectrum can be collected within a short period (2-10 min per sample), one-by-one screening of a protein against a library of hundreds or thousands of compounds requires a large amount of spectrometer time and a large quantity of protein. Therefore, compounds are usually evaluated in mixtures ranging in size from 3 to 20 compounds to improve the efficiency of these screens in both time and material. Ideally, the NMR signals from individual compounds in the mixture should not overlap so that spectral changes can be associated with a particular compound. We have developed a software tool, NMRmix, to assist in creating ideal mixtures from a large panel of compounds with known chemical shifts. Input to NMRmix consists of an (1)H NMR peak list for each compound, a user-defined overlap threshold, and additional user-defined parameters if default settings are not used. NMRmix utilizes a simulated annealing algorithm to optimize the composition of the mixtures to minimize spectral peak overlaps so that each compound in the mixture is represented by a maximum number of nonoverlapping chemical shifts. A built-in graphical user interface simplifies data import and visual evaluation of the results.


Assuntos
Ensaios de Triagem em Larga Escala , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Software , Algoritmos , Ligantes , Espectroscopia de Ressonância Magnética , Ligação Proteica
11.
J Biomol NMR ; 64(4): 307-32, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27023095

RESUMO

NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).


Assuntos
Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Proteínas/química , Pesquisa , Software , Navegador
12.
J Biomol NMR ; 62(4): 481-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900069

RESUMO

The computationally demanding nature of automated NMR structure determination necessitates a delicate balancing of factors that include the time complexity of data collection, the computational complexity of chemical shift assignments, and selection of proper optimization steps. During the past two decades the computational and algorithmic aspects of several discrete steps of the process have been addressed. Although no single comprehensive solution has emerged, the incorporation of a validation protocol has gained recognition as a necessary step for a robust automated approach. The need for validation becomes even more pronounced in cases of proteins with higher structural complexity, where potentially larger errors generated at each step can propagate and accumulate in the process of structure calculation, thereby significantly degrading the efficacy of any software framework. This paper introduces a complete framework for protein structure determination with NMR--from data acquisition to the structure determination. The aim is twofold: to simplify the structure determination process for non-NMR experts whenever feasible, while maintaining flexibility by providing a set of modules that validate each step, and to enable the assessment of error propagations. This framework, called NMRFAM-SDF (NMRFAM-Structure Determination Framework), and its various components are available for download from the NMRFAM website (http://nmrfam.wisc.edu/software.htm).


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Software , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Navegador , Fluxo de Trabalho
13.
PLoS One ; 18(11): e0291209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37972054

RESUMO

Numerous methodologies are used for blood RNA extraction, and large quantitative differences in recovered RNA content are reported. We evaluated three archived data sets to determine how extraction methodologies might influence mRNA and lncRNA sequencing results. The total quantity of RNA recovered /ml of blood affects RNA sequencing by impacting the recovery of weakly expressed mRNA, and lncRNA transcripts. Transcript expression (TPM counts) plotted in relation to transcript size (base pairs, bp) revealed a 30% loss of short to midsized transcripts in some data sets. Quantitative recovery of RNA is of considerable importance, and it should be viewed more judiciously. Transcripts common to the three data sets were subsequently normalized and transcript mean TPM counts and TPM count coefficient of variation (CV) were plotted in relation to increasing transcript size. Regression analysis of mean TPM counts versus transcript size revealed negative slopes in two of the three data sets suggesting a reduction of TPM transcript counts with increasing transcript size. In the third data set, the regression slope line of mRNA transcript TPM counts approximates zero and TPM counts increased in proportion to transcript size over a range of 200 to 30,000 bp. Similarly, transcript TPM count CV values also were uniformly distributed over the range of transcript sizes. In the other data sets, the regression CV slopes increased in relation to transcript size. The recovery of weakly expressed and /or short to midsized mRNA and lncRNA transcripts varies with different RNA extraction methodologies thereby altering the fundamental sequencing relationship between transcript size and TPM counts. Our analysis identifies differences in RNA sequencing results that are dependent upon the quantity of total RNA recovery from whole blood. We propose that incomplete RNA extraction directly impacts the recovery of mRNA and lncRNA transcripts from human blood and speculate these differences contribute to the "batch" effects commonly identified between sequencing results from different archived data sets.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA/genética , RNA/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos
14.
J Biomol NMR ; 52(4): 289-302, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22359049

RESUMO

The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ((1)H-(15)N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ((1)H-(1)H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a majority of the NMR resonances, even when the initial predictions are only modestly accurate. RNA-PAIRS is available as a public web-server at http://pine.nmrfam.wisc.edu/RNA/.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , RNA/química , Biologia Computacional/métodos , Internet , Modelos Moleculares , Conformação de Ácido Nucleico , Reprodutibilidade dos Testes
15.
J Neurosci Methods ; 372: 109532, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182602

RESUMO

BACKGROUND: Spike trains are series of interspike intervals in a specific order that can be characterized by their probability distributions and order in time which refer to the concepts of rate and spike timing features. Periodic structure in the spike train can be reflected in oscillatory activities. Thus, there is a direct link between oscillator activities and the spike train. The proposed methods are to investigate the dependency of emerging oscillatory activities to the rate and the spike timing features. METHOD: First, the circular statistics methods were compared to Fast Fourier Transform for best estimation of spectra. Second, two statistical tests were introduced to help make decisions regarding the dependency of spectrum, or individual frequencies, onto rate and spike timing. Third, the methodology is applied to in-vivo recordings of basal ganglia neurons in mouse, primate, and human. Finally, this novel framework is shown to allow the investigation of subsets of spikes contributing to individual oscillators. RESULTS: Use of circular statistical methods, in comparison to FFT, minimizes spectral leakage. Using virtual spike trains, the Rate versus Timing Dependency Spectrum Test (or RTDs-Test) permits identifying spectral spike trains solely dependent on the rate feature from those that are also dependent on the spike timing feature. Similarly, the Rate versus Timing Dependency Frequency Test (or RTDf-Test), allows to identify individual oscillators with partial dependency on spike timing. Dependency on spike timing was found for all in-vivo recordings but only in few frequencies. The mapping in frequency and time of dependencies showed a dynamical process that may be organizing the basal ganglia function. CONCLUSIONS: The methodology may improve our understanding of the emergence of oscillatory activities and, possibly, the relation between oscillatory activities and circuitry functions.


Assuntos
Gânglios da Base , Neurônios , Potenciais de Ação/fisiologia , Animais , Camundongos , Modelos Neurológicos , Neurônios/fisiologia , Probabilidade
16.
Metabolites ; 12(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893244

RESUMO

Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021-the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements.

17.
Magn Reson (Gott) ; 2(2): 765-775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905229

RESUMO

Hydrogen bonding between an amide group and the p-π cloud of an aromatic ring was first identified in a protein in the 1980s. Subsequent surveys of high-resolution X-ray crystal structures found multiple instances, but their preponderance was determined to be infrequent. Hydrogen atoms participating in a hydrogen bond to the p-π cloud of an aromatic ring are expected to experience an upfield chemical shift arising from a shielding ring current shift. We surveyed the Biological Magnetic Resonance Data Bank for amide hydrogens exhibiting unusual shifts as well as corroborating nuclear Overhauser effects between the amide protons and ring protons. We found evidence that Trp residues are more likely to be involved in p-π hydrogen bonds than other aromatic amino acids, whereas His residues are more likely to be involved in in-plane hydrogen bonds, with a ring nitrogen acting as the hydrogen acceptor. The p-π hydrogen bonds may be more abundant than previously believed. The inclusion in NMR structure refinement protocols of shift effects in amide protons from aromatic sidechains, or explicit hydrogen bond restraints between amides and aromatic rings, could improve the local accuracy of sidechain orientations in solution NMR protein structures, but their impact on global accuracy is likely be limited.

18.
Front Mol Biosci ; 8: 817175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111815

RESUMO

The Biological Magnetic Resonance Data Bank (BMRB) has served the NMR structural biology community for 40 years, and has been instrumental in the development of many widely-used tools. It fosters the reuse of data resources in structural biology by embodying the FAIR data principles (Findable, Accessible, Inter-operable, and Re-usable). NMRbox is less than a decade old, but complements BMRB by providing NMR software and high-performance computing resources, facilitating the reuse of software resources. BMRB and NMRbox both facilitate reproducible research. NMRbox also fosters the development and deployment of complex meta-software. Combining BMRB and NMRbox helps speed and simplify workflows that utilize BMRB, and enables facile federation of BMRB with other data repositories. Utilization of BMRB and NMRbox in tandem will enable additional advances, such as machine learning, that are poised to become increasingly powerful.

19.
Bioinformatics ; 25(16): 2085-7, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19497931

RESUMO

SUMMARY: PINE-SPARKY supports the rapid, user-friendly and efficient visualization of probabilistic assignments of NMR chemical shifts to specific atoms in the covalent structure of a protein in the context of experimental NMR spectra. PINE-SPARKY is based on the very popular SPARKY package for visualizing multidimensional NMR spectra (T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San Francisco). PINE-SPARKY consists of a converter (PINE2SPARKY), which takes the output from an automated PINE-NMR analysis and transforms it into SPARKY input, plus a number of SPARKY extensions. Assignments and their probabilities obtained in the PINE-NMR step are visualized as labels in SPARKY's spectrum view. Three SPARKY extensions (PINE Assigner, PINE Graph Assigner, and Assign the Best by PINE) serve to manipulate the labels that signify the assignments and their probabilities. PINE Assigner lists all possible assignments for a peak selected in the dialog box and enables the user to choose among these. A window in PINE Graph Assigner shows all atoms in a selected residue along with all atoms in its adjacent residues; in addition, it displays a ranked list of PINE-derived connectivity assignments to any selected atom. Assign the Best-by-PINE allows the user to choose a probability threshold and to automatically accept as "fixed" all assignments above that threshold; following this operation, only the less certain assignments need to be examined visually. Once assignments are fixed, the output files generated by PINE-SPARKY can be used as input to PINE-NMR for further refinements. AVAILABILITY: The program, in the form of source code and binary code along with tutorials and reference manuals, is available at http://pine.nmrfam.wisc.edu/PINE-SPARKY.


Assuntos
Biologia Computacional/métodos , Gráficos por Computador , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Software , Algoritmos , Reconhecimento Automatizado de Padrão/métodos , Probabilidade , Interface Usuário-Computador
20.
PLoS Comput Biol ; 5(3): e1000307, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19282963

RESUMO

The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals (chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent steps of NMR structure determination.


Assuntos
Algoritmos , Interpretação Estatística de Dados , Marcação por Isótopo/métodos , Espectroscopia de Ressonância Magnética/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/análise , Proteínas/química , Sítios de Ligação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA