RESUMO
Fractionalization is a phenomenon in which strong interactions in a quantum system drive the emergence of excitations with quantum numbers that are absent in the building blocks. Outstanding examples are excitations with charge e/3 in the fractional quantum Hall effect1,2, solitons in one-dimensional conducting polymers3,4 and Majorana states in topological superconductors5. Fractionalization is also predicted to manifest itself in low-dimensional quantum magnets, such as one-dimensional antiferromagnetic S = 1 chains. The fundamental features of this system are gapped excitations in the bulk6 and, remarkably, S = 1/2 edge states at the chain termini7-9, leading to a four-fold degenerate ground state that reflects the underlying symmetry-protected topological order10,11. Here, we use on-surface synthesis12 to fabricate one-dimensional spin chains that contain the S = 1 polycyclic aromatic hydrocarbon triangulene as the building block. Using scanning tunnelling microscopy and spectroscopy at 4.5 K, we probe length-dependent magnetic excitations at the atomic scale in both open-ended and cyclic spin chains, and directly observe gapped spin excitations and fractional edge states therein. Exact diagonalization calculations provide conclusive evidence that the spin chains are described by the S = 1 bilinear-biquadratic Hamiltonian in the Haldane symmetry-protected topological phase. Our results open a bottom-up approach to study strongly correlated phases in purely organic materials, with the potential for the realization of measurement-based quantum computation13.
RESUMO
Atomically precise graphene nanoflakes called nanographenes have emerged as a promising platform to realize carbon magnetism. Their ground state spin configuration can be anticipated by Ovchinnikov-Lieb rules based on the mismatch of π electrons from two sublattices. While rational geometrical design achieves specific spin configurations, further direct control over the π electrons offers a desirable extension for efficient spin manipulations and potential quantum device operations. To this end, we apply a site-specific dehydrogenation using a scanning tunneling microscope tip to nanographenes deposited on a Au(111) substrate, which shows the capability of precisely tailoring the underlying π-electron system and therefore efficiently manipulating their magnetism. Through first-principles calculations and tight-binding mean-field-Hubbard modeling, we demonstrate that the dehydrogenation-induced Au-C bond formation along with the resulting hybridization between frontier π orbitals and Au substrate states effectively eliminate the unpaired π electron. Our results establish an efficient technique for controlling the magnetism of nanographenes.
RESUMO
The design of open-shell carbon-based nanomaterials is at the vanguard of materials science, steered by their beneficial magnetic properties like weaker spin-orbit coupling than that of transition metal atoms and larger spin delocalization, which are of potential relevance for future spintronics and quantum technologies. A key parameter in magnetic materials is the magnetic exchange coupling (MEC) between unpaired spins, which should be large enough to allow device operation at practical temperatures. In this work, we theoretically and experimentally explore three distinct families of nanographenes (NGs) (A, B, and C) featuring majority zigzag peripheries. Through many-body calculations, we identify a transition from a closed-shell ground state to an open-shell ground state upon an increase of the molecular size. Our predictions indicate that the largest MEC for open-shell NGs occurs in proximity to the transition between closed-shell and open-shell states. Such predictions are corroborated by the on-surface syntheses and structural, electronic, and magnetic characterizations of three NGs (A[3,5], B[4,5], and C[4,3]), which are the smallest open-shell systems in their respective chemical families and are thus located the closest to the transition boundary. Notably, two of the NGs (B[4,5] and C[4,3]) feature record values of MEC (close to 200 meV) measured on the Au(111) surface. Our strategy for maximizing the MEC provides perspectives for designing carbon nanomaterials with robust magnetic ground states.
RESUMO
Exact positioning of sublattice imbalanced nanostructures in graphene nanomaterials offers a route to control interactions between induced local magnetic moments and to obtain graphene nanomaterials with magnetically nontrivial ground states. Here, we show that such sublattice imbalanced nanostructures can be incorporated along a large band gap armchair graphene nanoribbon on the basis of asymmetric zigzag edge extensions, achieved by incorporating specifically designed precursor monomers. Scanning tunneling spectroscopy of an isolated and electronically decoupled zigzag edge extension reveals Hubbard-split states in accordance with theoretical predictions. Mean-field Hubbard-based modeling of pairs of such zigzag edge extensions reveals ferromagnetic, antiferromagnetic, or quenching of the magnetic interactions depending on the relative alignment of the asymmetric edge extensions. Moreover, a ferromagnetic spin chain is demonstrated for a periodic pattern of zigzag edge extensions along the nanoribbon axis. This work opens a route toward the fabrication of graphene nanoribbon-based spin chains with complex magnetic ground states.
RESUMO
Multiple fused pentagon-heptagon pairs are frequently found as defects at the grain boundaries of the hexagonal graphene lattice and are suggested to have a fundamental influence on graphene-related materials. However, the construction of sp2-carbon skeletons with multiple regularly fused pentagon-heptagon pairs is challenging. In this work, we found that the pentagon-heptagon skeleton of azulene was rearranged during the thermal reaction of an azulene-incorporated organometallic polymer on Au(111). The resulting sp2-carbon frameworks were characterized by high-resolution scanning probe microscopy techniques and feature novel polycyclic architectures composed of multiple regularly fused pentagon-heptagon pairs. Moreover, the calculated analysis of its aromaticity revealed a peculiar polar electronic structure.
RESUMO
Coronoids, polycyclic aromatic hydrocarbons with geometrically defined cavities, are promising model structures of porous graphene. Here, we report the on-surface synthesis of C168 and C140 coronoids, referred to as [6]- and [5]coronoid, respectively, using 5,9-dibromo-14-phenylbenzo[m]tetraphene as the precursor. These coronoids entail large cavities (>1 nm) with inner zigzag edges, distinct from their outer armchair edges. While [6]coronoid is planar, [5]coronoid is not. Low-temperature scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy unveil structural and electronic properties in accordance with those obtained from density functional theory calculations. Detailed analysis of ring current effects identifies the rings with the highest aromaticity of these coronoids, whose pattern matches their Clar structure. The pores of the obtained coronoids offer intriguing possibilities of further functionalization toward advanced host-guest applications.
RESUMO
Nanographenes (NGs) have gained increasing attention due to their immense potential as tailor-made organic materials for nanoelectronics and spintronics. They exhibit a rich spectrum of physicochemical properties that can be tuned by controlling the size or the edge structure or by introducing structural defects in the honeycomb lattice. Here, we report the design and on-surface synthesis of NGs containing several odd-membered polycycles induced by a thermal procedure on Au(111). Our scanning tunneling microscopy, noncontact atomic force microscopy, and scanning tunneling spectroscopy measurements, complemented by computational investigations, describe the formation of two nonbenzenoid NGs (2A,B) containing four embedded azulene units in the polycyclic framework, via on-surface oxidative ring-closure reactions. Interestingly, we observe surface-catalyzed skeletal ring rearrangement reactions in the NGs, which lead to the formation of additional heptagonal rings as well as pentalene and as-indacene units in 2A,B, respectively. 2A,B on Au(111) both exhibit narrow experimental frontier electronic gaps of 0.96 and 0.85 eV, respectively, and Fermi level pinning of their HOMOs together with considerable electron transfer to the substrate. Ab initio calculations estimate moderate open-shell biradical characters for the NGs in the gas phase.
RESUMO
On-surface synthesis offers a versatile approach to prepare novel carbon-based nanostructures that cannot be obtained by conventional solution chemistry. Graphene nanoribbons (GNRs) have potential for a variety of applications. A key issue for their application in molecular electronics is in the fine-tuning of their electronic properties through structural modifications, such as heteroatom doping or the incorporation of non-benzenoid rings. In this context, the covalent fusion of GNRs and porphyrins (Pors) is a highly appealing strategy. Herein we present the selective on-surface synthesis of a Por-GNR hybrid, which consists of two Pors connected by a short GNR segment. The atomically precise structure of the Por-GNR hybrid has been characterized by bond-resolved scanning tunneling microscopy (STM) and noncontact atomic force microscopy (nc-AFM). The electronic properties have been investigated by scanning tunneling spectroscopy (STS), in combination with DFT calculations, which reveals a low electronic gap of 0.4â eV.
RESUMO
Triangular zigzag nanographenes, such as triangulene and its π-extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high-spin networks with long-range magnetic order, which are of immense fundamental and technological relevance. As a first step towards these lines, we present the on-surface synthesis and a proof-of-principle experimental study of magnetism in covalently bonded triangulene dimers. On-surface reactions of rationally designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4-phenylene spacer. The chemical structures of the dimers have been characterized by bond-resolved scanning tunneling microscopy. Scanning tunneling spectroscopy and inelastic electron tunneling spectroscopy measurements reveal collective singlet-triplet spin excitations in the dimers, demonstrating efficient intertriangulene magnetic coupling.
RESUMO
Cumulene compounds are notoriously difficult to prepare and study because their reactivity increases dramatically with the increasing number of consecutive double bonds. In this respect, the emerging field of on-surface synthesis provides exceptional opportunities because it relies on reactions on clean metal substrates under well-controlled ultrahigh-vacuum conditions. Here we report the on-surface synthesis of a polymer linked by cumulene-like bonds on a Au(111) surface via sequential thermally activated dehalogenative C-C coupling of a tribenzoazulene precursor equipped with two dibromomethylene groups. The structure and electronic properties of the resulting polymer with cumulene-like pentagon-pentagon and heptagon-heptagon connections have been investigated by means of scanning probe microscopy and spectroscopy methods and X-ray photoelectron spectroscopy, complemented by density functional theory calculations. Our results provide perspectives for the on-surface synthesis of cumulene-containing compounds, as well as protocols relevant to the stepwise fabrication of carbon-carbon bonds on surfaces.
RESUMO
The electronic and magnetic properties of nanographenes strongly depend on their size, shape and topology. While many nanographenes present a closed-shell electronic structure, certain molecular topologies may lead to an open-shell structure. Triangular-shaped nanographenes with zigzag edges, which exist as neutral radicals, are of considerable interest both in fundamental science and for future technologies aimed at harnessing their intrinsic high-spin magnetic ground states for spin-based operations and information storage. Their synthesis, however, is extremely challenging owing to the presence of unpaired electrons, which confers them with enhanced reactivity. We report a combined in-solution and on-surface synthesis of π-extended triangulene, a non-Kekulé nanographene with the structural formula C33H15, consisting of ten benzene rings fused in a triangular fashion. The distinctive topology of the molecule entails the presence of three unpaired electrons that couple to form a spin quartet ground state. The structure of individual molecules adsorbed on an inert gold surface is confirmed through ultrahigh-resolution scanning tunneling microscopy. The electronic properties are studied via scanning tunneling spectroscopy, wherein unambiguous spectroscopic signatures of the spin-split singly occupied molecular orbitals are found. Detailed insight into its properties is obtained through tight-binding, density functional and many-body perturbation theory calculations, with the latter providing evidence that π-extended triangulene retains its open-shell quartet ground state on the surface. Our work provides unprecedented access to open-shell nanographenes with high-spin ground states, potentially useful in carbon-based spintronics.
RESUMO
Polycyclic hydrocarbons have received great attention due to their potential role in organic electronics and, for open-shell systems with unpaired electron densities, in spintronics and data storage. However, the intrinsic instability of polyradical hydrocarbons severely limits detailed investigations of their electronic structure. Here, we report the on-surface synthesis of conjugated polymers consisting of indeno[2,1-b]fluorene units, which are antiaromatic and open-shell biradicaloids. The observed reaction products, which also include a nonbenzenoid porous ribbon arising from lateral fusion of unprotected indeno[2,1-b]fluorene chains, have been characterized via low-temperature scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy, complemented by density-functional theory calculations. These polymers present a low band gap when adsorbed on Au(111). Moreover, their pronounced antiaromaticity and radical character, elucidated by ab initio calculations, make them promising candidates for applications in electronics and spintronics. Further, they provide a rich playground to explore magnetism in low-dimensional organic nanomaterials.
RESUMO
On-surface synthesis provides an effective approach toward the formation of graphene nanostructures that are difficult to achieve via traditional solution chemistry. Here, we report on the design and synthesis of a nonplanar porous nanographene with 78 sp 2 carbon atoms, namely C78. Through a highly selective oxidative cyclodehydrogenation of 2,3,6,7,10,11-hexa(naphthalen-1-yl)triphenylene (2), propeller nanographene precursor 1 was synthesized in solution. Interestingly, although 1 could not be cyclized further in solution, porous nanographene C78 was successfully achieved from 1 by on-surface assisted cyclodehydrogenation on Au(111). The structure and electronic properties of C78 have been investigated by means of scanning tunneling microscopy, noncontact atomic force microscopy, and scanning tunneling spectroscopy, complemented by computational investigations. Our results provide perspectives for the on-surface synthesis of porous graphene nanostructures, offering a promising strategy for the engineering of graphene materials with tailor-made properties.
RESUMO
Bottom-up synthesis of graphene nanoribbons (GNRs) has significantly advanced during the past decade, providing various GNR structures with tunable properties. The synthesis of chiral GNRs, however, has been underexplored and only limited to (3,1)-GNRs. We report herein the surface-assisted synthesis of the first heteroatom-doped chiral (4,1)-GNRs from the rationally designed precursor 6,16-dibromo-9,10,19,20-tetraoxa-9a,19a-diboratetrabenzo[ a, f, j, o]perylene. The structure of the chiral GNRs has been verified by scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy in combination with theoretical modeling. Due to the presence of oxygen-boron-oxygen (OBO) segments on the edges, lateral self-assembly of the GNRs has been observed, realizing well-aligned GNR arrays with different modes of homochiral and heterochiral inter-ribbon assemblies.
RESUMO
Surface-catalyzed reactions have been used to synthesize carbon nanomaterials with atomically predefined structures. The recent discovery of a gold surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituted arenes has enabled the on-surface synthesis of arylene-phenylene copolymers, where the surface activates the isopropyl substituents to form phenylene rings by intermolecular coupling. However, the resulting polymers suffered from undesired cross-linking when more than two molecules reacted at a single site. Here we show that such cross-links can be prevented through steric protection by attaching the isopropyl groups to larger arene cores. Upon thermal activation of isopropyl-substituted 8,9-dioxa-8a-borabenzo[fg]tetracene on Au(111), cycloaromatization is observed to occur exclusively between the two molecules. The cycloaromatization intermediate formed by the covalent linking of two molecules is prevented from reacting with further molecules by the wide benzotetracene core, resulting in highly selective one-to-one coupling. Our findings extend the versatility of the [3 + 3] cycloaromatization of isopropyl substituents and point toward steric protection as a powerful concept for suppressing competing reaction pathways in on-surface synthesis.
RESUMO
Atomically precise graphene nanoribbons (GNRs) have a wide range of electronic properties that depend sensitively on their chemical structure. Several types of GNRs have been synthesized on metal surfaces through selective surface-catalyzed reactions. The resulting GNRs are adsorbed on the metal surface, which may lead to hybridization between the GNR orbitals and those of the substrate. This makes investigation of the intrinsic electronic properties of GNRs more difficult and also rules out capacitive gating. Here, we demonstrate the formation of a dielectric gold chloride adlayer that can intercalate underneath GNRs on the Au(111) surface. The intercalated gold chloride adlayer electronically decouples the GNRs from the metal and leads to a substantial hole-doping of the GNRs. Our results introduce an easily accessible tool in the in situ characterization of GNRs grown on Au(111) that allows for exploration of their electronic properties in a heavily hole-doped regime.
RESUMO
The Open Databases Integration for Materials Design (OPTIMADE) application programming interface (API) empowers users with holistic access to a growing federation of databases, enhancing the accessibility and discoverability of materials and chemical data. Since the first release of the OPTIMADE specification (v1.0), the API has undergone significant development, leading to the v1.2 release, and has underpinned multiple scientific studies. In this work, we highlight the latest features of the API format, accompanying software tools, and provide an update on the implementation of OPTIMADE in contributing materials databases. We end by providing several use cases that demonstrate the utility of the OPTIMADE API in materials research that continue to drive its ongoing development.
RESUMO
Graphene nanoribbons (GNRs) have gained significant attention in nanoelectronics due to their potential for precise tuning of electronic properties through variations in edge structure and ribbon width. However, the synthesis of GNRs with highly sought-after zigzag edges (ZGNRs), critical for spintronics and quantum information technologies, remains challenging. In this study, a design motif for synthesizing a novel class of GNRs termed edge-extended ZGNRs is presented. This motif enables the controlled incorporation of edge extensions along the zigzag edges at regular intervals. The synthesis of a specific GNR instance-a 3-zigzag-rows-wide ZGNR-with bisanthene units fused to the zigzag edges on alternating sides of the ribbon axis is successfully demonstrated. The resulting edge-extended 3-ZGNR is comprehensively characterized for its chemical structure and electronic properties using scanning probe techniques, complemented by density functional theory calculations. The design motif showcased here opens up new possibilities for synthesizing a diverse range of edge-extended ZGNRs, expanding the structural landscape of GNRs and facilitating the exploration of their structure-dependent electronic properties.
RESUMO
Heteroatom substitution in acenes allows tailoring of their remarkable electronic properties, expected to include spin-polarization and magnetism for larger members of the acene family. Here, we present a strategy for the on-surface synthesis of three undecacene analogs substituted with four nitrogen atoms on an Au(111) substrate, by employing specifically designed diethano-bridged precursors. A similarly designed precursor is used to synthesize the pristine undecacene molecule. By comparing experimental features of scanning probe microscopy with ab initio simulations, we demonstrate that the ground state of the synthesized tetraazaundecacene has considerable open-shell character on Au(111). Additionally, we demonstrate that the electronegative nitrogen atoms induce a considerable shift in energy level alignment compared to the pristine undecacene, and that the introduction of hydro-aza groups causes local anti-aromaticity in the synthesized compounds. Our work provides access to the precise fabrication of nitrogen-substituted acenes and their analogs, potential building-blocks of organic electronics and spintronics, and a rich playground to explore π-electron correlation.