Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(2): 1375-1383, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36469260

RESUMO

BACKGROUND: Micro RNAs (miRNAs) are small non-coding RNAs known as essential regulators of cell-cell communication. Recent studies have revealed that miRNAs are secreted by a blastocyst in culture media. We hypothesized that endometrial epithelial cells take up embryo-derived miRNAs as well as other soluble factors and regulate their receptivity-related gene expression. METHODS AND RESULTS: Blastocyst culture media (BCM) were collected from the individually cultured embryos, while human endometrial epithelial cells (HEECs) were collected from healthy fertile volunteers. To evaluate the effect of BCM on the endometrial receptivity gene expression, HEECs were co-cultured with implanted BCM, non-implanted BCM, and a control culture medium. After determining altered gene expression in the HEECs, the miRNAs-related genes through bioinformatics databases were identified and evaluated in the BCM. Co-culture of primary HEECs with BCM significantly stimulated the expression levels of VEGFA, HBEGF, HOXA10, and LIF in the implanted group compared with non-implanted and control groups. The fold changes of miR-195 significantly diminished in the implanted BCM group compared with the non-implanted BCM group. Reduced fold changes of miR-29b, 145 and increased miR-223 were also observed in the implanted BCM group compared with the non-implanted ones. CONCLUSION: miRNAs could function as potential gene expression regulators during implantation. These molecules are secreted by human blastocyst, taken up by endometrial epithelial cells, and cause a change in the endometrial function. We found that BCMs can be effective in implantation process by stimulating related receptivity gene expression.


Assuntos
MicroRNAs , Humanos , Feminino , MicroRNAs/metabolismo , Implantação do Embrião/genética , Blastocisto/metabolismo , Meios de Cultura/farmacologia , Expressão Gênica , Endométrio/metabolismo
2.
PLoS One ; 17(6): e0263658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35700181

RESUMO

Polycystic ovarian syndrome (PCOS) is a common poignant endocrine disorder affecting women, posing a close association with metabolic syndrome and obesity. Existing literature characterizes PCOS with deranged levels of several adipokines and myokines. CTRP15 is a paralogue of adiponectin, mainly expressed by skeletal muscles, and plays a key role in insulin, glucose, and lipid metabolism. In the current study, we aim to determine the circulating levels of CTRP15 and evaluate its association with cardiometabolic and inflammatory parameters in PCOS women. This case-control study included 120 PCOS patients (60 Recurrent pregnancy loss (RPL) and 60 infertile (inf) PCOS) and 60 healthy non-PCOS controls. Serum levels of hs-CRP were measured by commercial kits, while serum levels of adiponectin and CTRP15 were determined using the ELISA technique. Serum levels of CTRP15 were significantly elevated in PCOS-RPL and PCOS-inf subgroups when compared to controls (94.80 ± 27.08 and 87.77 ± 25.48 vs. 54.78 ± 15.45, both P < 0.001). Moreover, serum adiponectin was considerably lower in the PCOS group and subgroups (P < 0.001), while serum hs-CRP, fasting insulin, HOMA-IR, and free testosterone were significantly higher when compared to the non-PCOS group (P < 0.05). Furthermore, CTRP15 closely associated with FSH, HOMA-IR, hs-CRP, and BMI. These results highlight a possible involvement of CTRP15 in the pathogenesis of PCOS. The elevated levels of CTRP15 might be a compensatory mechanism for the metabolic dysregulations (excess adiposity, insulin resistance, metaflammation) associated with the syndrome. Nevertheless, future studies are necessary to unravel the underlying mechanism.


Assuntos
Complemento C1q , Resistência à Insulina , Hormônios Peptídicos , Síndrome do Ovário Policístico , Adiponectina/sangue , Índice de Massa Corporal , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Complemento C1q/metabolismo , Feminino , Humanos , Insulina , Resistência à Insulina/fisiologia , Obesidade/sangue , Hormônios Peptídicos/sangue , Síndrome do Ovário Policístico/sangue
3.
Biomed Pharmacother ; 84: 1668-1678, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27863842

RESUMO

The T follicular helper cells (TFH) are a subset of CD4+ T cells specialized to regulate antibody responses. The production of these cells is associated with the dendritic cells (DCs) and B cells. TFH cells help B cells form germinal centers (GC) differentiate into memory and plasma cells (antibody-secreting cells) as humoral responses. In addition, there is strong evidence that TFH cells play a pivotal role in the development of long-lived humoral immunity. Molecular factors such as transcription factors, surface receptors, cytokine and micro RNAs are involved in the formation of TFH cells. Such TFH cells are diagnosed by transcription factor (BCL-6), surface marker expression (including CXCR5, PD-1, ICOS and CD40L) and a unique cytokine production pattern (such as IL-21 and IL-6). Memory TFH cells, accompanied by memory B cells, are known to be formed during antibody responses. It is now clear that the precise control of TFH cells is critically important for both inducing the optimal affinity maturation of antibody responses and preventing self-reactivity. Exclusive controls of TFH cell function and production are essential for human health. However, it is important to note that excessive activities may lead to autoimmune diseases, while reduced activity often results in immunodeficiency. It has also been shown that TFH cells are associated with cancers such as angioimmunoblastic T-cell lymphoma (AITL), follicular T-cell lymphoma (FTCL) and nonspecific Peripheral T-cell lymphomas (PTCLs). The biology of TFH cells, including their differentiation and transcriptional regulation will be described in the present review. Some of The developments of these cells in immunodeficiency diseases, autoimmunity and cancer will also be taken into account.


Assuntos
Doença , Sistema Imunitário/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Humanos , Imunidade , Memória Imunológica , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA