RESUMO
The scientific community is focused on developing antiviral therapies to mitigate the impacts of the ongoing novel coronavirus disease 2019 (COVID-19) outbreak. This will be facilitated by improved understanding of viral dynamics within infected hosts. Here, using a mathematical model in combination with published viral load data, we compare within-host viral dynamics of SARS-CoV-2 with analogous dynamics of MERS-CoV and SARS-CoV. Our quantitative analyses using a mathematical model revealed that the within-host reproduction number at symptom onset of SARS-CoV-2 was statistically significantly larger than that of MERS-CoV and similar to that of SARS-CoV. In addition, the time from symptom onset to the viral load peak for SARS-CoV-2 infection was shorter than those of MERS-CoV and SARS-CoV. These findings suggest the difficulty of controlling SARS-CoV-2 infection by antivirals. We further used the viral dynamics model to predict the efficacy of potential antiviral drugs that have different modes of action. The efficacy was measured by the reduction in the viral load area under the curve (AUC). Our results indicate that therapies that block de novo infection or virus production are likely to be effective if and only if initiated before the viral load peak (which appears 2-3 days after symptom onset), but therapies that promote cytotoxicity of infected cells are likely to have effects with less sensitivity to the timing of treatment initiation. Furthermore, combining a therapy that promotes cytotoxicity and one that blocks de novo infection or virus production synergistically reduces the AUC with early treatment. Our unique modeling approach provides insights into the pathogenesis of SARS-CoV-2 and may be useful for development of antiviral therapies.
Assuntos
Betacoronavirus/fisiologia , COVID-19/terapia , COVID-19/virologia , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/transmissão , Infecções por Coronavirus/terapia , Infecções por Coronavirus/virologia , Humanos , Estudos Longitudinais , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Modelos Biológicos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/fisiologia , Carga Viral/efeitos dos fármacosRESUMO
There are many contrasting results concerning the effectiveness of Test-Trace-Isolate (TTI) strategies in mitigating SARS-CoV-2 spread. To shed light on this debate, we developed a novel static-temporal multiplex network characterizing both the regular (static) and random (temporal) contact patterns of individuals and a SARS-CoV-2 transmission model calibrated with historical COVID-19 epidemiological data. We estimated that the TTI strategy alone could not control the disease spread: assuming R0 = 2.5, the infection attack rate would be reduced by 24.5%. Increased test capacity and improved contact trace efficiency only slightly improved the effectiveness of the TTI. We thus investigated the effectiveness of the TTI strategy when coupled with reactive social distancing policies. Limiting contacts on the temporal contact layer would be insufficient to control an epidemic and contacts on both layers would need to be limited simultaneously. For example, the infection attack rate would be reduced by 68.1% when the reactive distancing policy disconnects 30% and 50% of contacts on static and temporal layers, respectively. Our findings highlight that, to reduce the overall transmission, it is important to limit contacts regardless of their types in addition to identifying infected individuals through contact tracing, given the substantial proportion of asymptomatic and pre-symptomatic SARS-CoV-2 transmission.
Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Busca de Comunicante , Distanciamento FísicoRESUMO
The coronavirus disease 2019 (COVID-19) pandemic that has been ongoing since 2019 is still ongoing and how to control it is one of the international issues to be addressed. Antiviral drugs that reduce the viral load in terms of reducing the risk of secondary infection are important. For the general control of emerging infectious diseases, establishing an efficient method to evaluate candidate therapeutic agents will lead to a rapid response. We evaluated clinical trial designs for viral entry inhibitors that have the potential to be effective pre-exposure prophylactic drugs in addition to reducing viral load after infection. We used a previously developed simulation of clinical trials based on a mathematical model of within-host viral infection dynamics to evaluate sample sizes in clinical trials of viral entry inhibitors against COVID-19. We assumed four measures as outcomes, namely change in log10-transformed viral load from symptom onset, PCR positive ratio, log10-transformed viral load, and cumulative viral load, and then sample sizes were calculated for drugs with 99 % and 95 % antiviral efficacy. Consistent with previous results, we found that sample sizes could be dramatically reduced for all outcomes used in an analysis by adopting inclusion/exclusion criteria such that only patients in the early post-infection period would be included in a clinical trial. A comparison of sample sizes across outcomes demonstrated an optimal measurement schedule associated with the nature of the outcome measured for the evaluation of drug efficacy. In particular, the sample sizes calculated from the change in viral load and from viral load tended to be small when measurements were taken at earlier time points after treatment initiation. For the cumulative viral load, the sample size was lower than that from the other outcomes when the stricter inclusion/exclusion criteria to include patients whose time since onset is earlier than 2 days was used. We concluded that the design of efficient clinical trials should consider the inclusion/exclusion criteria and measurement schedules, as well as outcome selection based on sample size, personnel and budget needed to conduct the trial, and the importance of the outcome regarding the medical and societal requirements. This study provides insights into clinical trial design for a variety of situations, especially addressing infectious disease prevalence and feasible trial sizes. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Tamanho da Amostra , Resultado do TratamentoRESUMO
BACKGROUND: Multiple waves of the COVID-19 epidemic have hit most countries by the end of 2021. Most of those waves are caused by emergence and importation of new variants. To prevent importation of new variants, combination of border control and contact tracing is essential. However, the timing of infection inferred by interview is influenced by recall bias and hinders the contact tracing process. METHODS: We propose a novel approach to infer the timing of infection, by employing a within-host model to capture viral load dynamics after the onset of symptoms. We applied this approach to ascertain secondary transmission which can trigger outbreaks. As a demonstration, the 12 initial reported cases in Singapore, which were considered as imported because of their recent travel history to Wuhan, were analyzed to assess whether they are truly imported. RESULTS: Our approach suggested that 6 cases were infected prior to the arrival in Singapore, whereas other 6 cases might have been secondary local infection. Three among the 6 potential secondary transmission cases revealed that they had contact history to previously confirmed cases. CONCLUSIONS: Contact trace combined with our approach using viral load data could be the key to mitigate the risk of importation of new variants by identifying cases as early as possible and inferring the timing of infection with high accuracy.
Assuntos
COVID-19 , SARS-CoV-2 , Busca de Comunicante , Humanos , Viagem , Carga ViralRESUMO
BACKGROUND: Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. METHODS AND FINDINGS: A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d-1 (95% CI: 1.06 to 1.27 d-1), 0.777 d-1 (0.716 to 0.838 d-1), and 0.450 d-1 (0.378 to 0.522 d-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). Subsequently, we mimicked randomized controlled trials of antivirals by simulation. An antiviral effect causing a 95% to 99% reduction in viral replication was added to the model. To be realistic, we assumed that randomization and treatment are initiated with some time lag after symptom onset. Using the duration of virus shedding as an outcome, the sample size to detect a statistically significant mean difference between the treatment and placebo groups (1:1 allocation) was 13,603 and 11,670 (when the antiviral effect was 95% and 99%, respectively) per group if all patients are enrolled regardless of timing of randomization. The sample size was reduced to 584 and 458 (when the antiviral effect was 95% and 99%, respectively) if only patients who are treated within 1 day of symptom onset are enrolled. We confirmed the sample size was similarly reduced when using cumulative viral load in log scale as an outcome. We used a conventional virus dynamics model, which may not fully reflect the detailed mechanisms of viral dynamics of SARS-CoV-2. The model needs to be calibrated in terms of both parameter settings and model structure, which would yield more reliable sample size calculation. CONCLUSIONS: In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.
Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Ensaios Clínicos Controlados Aleatórios como Assunto , Tamanho da Amostra , Humanos , Modelos Biológicos , SARS-CoV-2 , Resultado do Tratamento , Carga Viral , Replicação Viral , Eliminação de Partículas ViraisRESUMO
A prophylactic vaccine against human immunodeficiency virus (HIV) remains a top priority in biomedical research. Given the failure of conventional immunization protocols to confer robust protection against HIV, new and unconventional approaches may be needed to generate protective anti-HIV immunity. Here we vaccinated rhesus macaques (RMs) with a recombinant (r)DNA prime (without any exogenous adjuvant), followed by a booster with rhesus monkey rhadinovirus (RRV)-a herpesvirus that establishes persistent infection in RMs (Group 1). Both the rDNA and rRRV vectors encoded a near-full-length simian immunodeficiency virus (SIVnfl) genome that assembles noninfectious SIV particles and expresses all nine SIV gene products. This rDNA/rRRV-SIVnfl vaccine regimen induced persistent anti-Env antibodies and CD8+ T-cell responses against the entire SIV proteome. Vaccine efficacy was assessed by repeated, marginal-dose, intrarectal challenges with SIVmac239. Encouragingly, vaccinees in Group 1 acquired SIVmac239 infection at a significantly delayed rate compared to unvaccinated controls (Group 3). In an attempt to improve upon this outcome, a separate group of rDNA/rRRV-SIVnfl-vaccinated RMs (Group 2) was treated with a cytotoxic T-lymphocyte antigen-4 (CTLA-4)-blocking monoclonal antibody during the vaccine phase and then challenged in parallel with Groups 1 and 3. Surprisingly, Group 2 was not significantly protected against SIVmac239 infection. In sum, SIVnfl vaccination can protect RMs against rigorous mucosal challenges with SIVmac239, a feat that until now had only been accomplished by live-attenuated strains of SIV. Further work is needed to identify the minimal requirements for this protection and whether SIVnfl vaccine efficacy can be improved by means other than anti-CTLA-4 adjuvant therapy.
Assuntos
Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Animais , Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Feminino , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Esquemas de Imunização , Imunização Secundária , Macaca mulatta , Masculino , Reto/imunologia , Reto/virologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologiaRESUMO
The objective of this study was to investigate the associations of mode of feeding with infant anthropometric and body composition variables at 6 months of age. We studied 259 infants whose exclusive mode of feeding (breast or formula) to 1 month was confirmed. Standard anthropometric characteristics of the infants (weight, length and weight-for-length z scores) were obtained, and body composition (total fat mass, fat-free mass, trunk fat mass and body fat percent) was measured using dual-energy X-ray absorptiometry (DXA) at 6 months (±12 days). General linear models were used to test the associations of mode of feeding with infant anthropometric and body composition variables at 6 months after adjustment for maternal and infant covariates. In this cohort of predominantly breastfed, White infants of highly educated mothers, fat-free mass was lower (P = .002), and trunk fat mass (P = .032) and body fat percent (P < .001) were greater in breastfed infants than in formula-fed infants at 6 months of age. After adjustment for covariates, total fat-free mass was significantly lower (ß = -372 g, [SE = 125, P = .003]), and body fat percent was significantly greater (ß = 3.30, [SE = 0.91, P < .001]) in breastfed infants than in formula-fed infants. No other significant associations were observed. These findings support those of previous studies reporting greater fat-free mass in formula-fed infants during the first 6 months of life. Additional research is warranted to explore whether differences in infant body composition by mode of feeding persist throughout the life course and to assess causality.
Assuntos
Composição Corporal , Aleitamento Materno , Antropometria , Feminino , Humanos , Lactente , Fórmulas Infantis , Fenômenos Fisiológicos da Nutrição do LactenteRESUMO
BACKGROUND/OBJECTIVES: Genetic contributors to obesity are frequently studied in murine models. However, the sample sizes of these studies are often small, and the data may violate assumptions of common statistical tests, such as normality of distributions. We examined whether, in these cases, type I error rates and power are affected by the choice of statistical test. SUBJECTS/METHODS: We conducted "plasmode"-based simulation using empirical data on body mass (weight) from murine genetic models of obesity. For the type I error simulation, the weight distributions were adjusted to ensure no difference in means between control and mutant groups. For the power simulation, the distributions of the mutant groups were shifted to ensure specific effect sizes. Three to twenty mice were resampled from the empirical distributions to create a plasmode. We then computed type I error rates and power for five common tests on the plasmodes: Student's t test, Welch's t test, Wilcoxon rank sum test (aka, Mann-Whitney U test), permutation test, and bootstrap test. RESULTS: We observed type I error inflation for all tests, except the bootstrap test, with small samples (≤5). Type I error inflation decreased as sample size increased (≥8) but remained. The Wilcoxon test should be avoided because of heterogeneity of distributions. For power, a departure from the reference was observed with small samples for all tests. Compared with the other tests, the bootstrap test had less power with small samples. CONCLUSIONS: Overall, the bootstrap test is recommended for small samples to avoid type I error inflation, but this benefit comes at the cost of lower power. When sample size is large enough, Welch's t test is recommended because of high power with minimal type I error inflation.
Assuntos
Simulação por Computador , Interpretação Estatística de Dados , Modelos Genéticos , Obesidade/genética , Animais , Camundongos , Tamanho da Amostra , Estatísticas não ParamétricasRESUMO
Approximately 50% of rhesus macaques (RMs) expressing the major histocompatibility complex class I (MHC-I) allele Mamu-B*08 spontaneously control chronic-phase viremia after infection with the pathogenic simian immunodeficiency virus mac239 (SIVmac239) clone. CD8+ T-cell responses in these animals are focused on immunodominant Mamu-B*08-restricted SIV epitopes in Vif and Nef, and prophylactic vaccination with these epitopes increases the incidence of elite control in SIVmac239-infected Mamu-B*08-positive (Mamu-B*08+ ) RMs. Here we evaluated if robust vaccine-elicited CD8+ T-cell responses against Vif and Nef can prevent systemic infection in Mamu-B*08+ RMs following mucosal SIV challenges. Ten Mamu-B*08+ RMs were vaccinated with a heterologous prime/boost/boost regimen encoding Vif and Nef, while six sham-vaccinated MHC-I-matched RMs served as the controls for this experiment. Vaccine-induced CD8+ T cells against Mamu-B*08-restricted SIV epitopes reached high frequencies in blood but were present at lower levels in lymph node and gut biopsy specimens. Following repeated intrarectal challenges with SIVmac239, all control RMs became infected by the sixth SIV exposure. By comparison, four vaccinees were still uninfected after six challenges, and three of them remained aviremic after 3 or 4 additional challenges. The rate of SIV acquisition in the vaccinees was numerically lower (albeit not statistically significantly) than that in the controls. However, peak viremia was significantly reduced in infected vaccinees compared to control animals. We found no T-cell markers that distinguished vaccinees that acquired SIV infection from those that did not. Additional studies will be needed to validate these findings and determine if cellular immunity can be harnessed to prevent the establishment of productive immunodeficiency virus infection.IMPORTANCE It is generally accepted that the antiviral effects of vaccine-induced classical CD8+ T-cell responses against human immunodeficiency virus (HIV) are limited to partial reductions in viremia after the establishment of productive infection. Here we show that rhesus macaques (RMs) vaccinated with Vif and Nef acquired simian immunodeficiency virus (SIV) infection at a lower (albeit not statistically significant) rate than control RMs following repeated intrarectal challenges with a pathogenic SIV clone. All animals in the present experiment expressed the elite control-associated major histocompatibility complex class I (MHC-I) molecule Mamu-B*08 that binds immunodominant epitopes in Vif and Nef. Though preliminary, these results provide tantalizing evidence that the protective efficacy of vaccine-elicited CD8+ T cells may be greater than previously thought. Future studies should examine if vaccine-induced cellular immunity can prevent systemic viral replication in RMs that do not express MHC-I alleles associated with elite control of SIV infection.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Produtos do Gene nef/imunologia , Produtos do Gene vif/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Epitopos de Linfócito T/imunologia , Produtos do Gene nef/administração & dosagem , Produtos do Gene vif/administração & dosagem , Antígenos de Histocompatibilidade Classe I/imunologia , Macaca mulatta , Vacinação , Vacinas Virais/imunologia , Viremia/imunologiaRESUMO
APOBEC3 proteins inhibit human immunodeficiency virus (HIV)-1 infection by independently impairing viral reverse transcription and inducing G-to-A mutations in viral DNA. An HIV-1-encoded protein, viral infectivity factor (Vif), can counteract these antiviral activities of APOBEC3 proteins. Although previous studies using in vitro cell culture systems have revealed the molecular mechanisms of the antiviral action of APOBEC3 proteins and their antagonism by Vif, it remains unclear how APOBEC3 proteins affect the kinetics of HIV-1 replication in vivo. Here we quantified the time-series of viral load datasets from humanized mice infected with HIV-1 variants in the presence of APOBEC3F, APOBEC3G, or both APOBEC3F/G using a simple mathematical model that accounted for inter-individual variability. Through experimental and mathematical investigation, we formulated and calculated the total antiviral activity of APOBEC3F and APOBEC3G based on the estimated initial growth rates of viral loads in vivo. Interestingly, we quantitatively demonstrated that compared with APOBEC3G, the antiviral activity of APOBEC3F was widely distributed but skewed toward lower activity, although their mean values were similar. We concluded that APOBEC3G markedly and robustly restricted the initial stages of viral growth in vivo. This is the first report to quantitatively elucidate how APOBEC3F and APOBEC3G differ in their anti-HIV-1 modes in vivo.
Assuntos
Infecções por HIV , HIV-1 , Desaminase APOBEC-3G , Animais , Antivirais , Citidina Desaminase , Citosina Desaminase , CamundongosRESUMO
BACKGROUND: The World Health Organization declared the novel coronavirus outbreak (COVID-19) to be a pandemic on March 11, 2020. Large-scale monitoring for capturing the current epidemiological situation of COVID-19 in Japan would improve preparation for and prevention of a massive outbreak. METHODS: A chatbot-based healthcare system named COOPERA (COvid-19: Operation for Personalized Empowerment to Render smart prevention And care seeking) was developed using the LINE app to evaluate the current Japanese epidemiological situation. LINE users could participate in the system either though a QR code page in the prefectures' websites or a banner at the top of the LINE app screen. COOPERA asked participants questions regarding personal information, preventive actions, and non-specific symptoms related to COVID-19 and their duration. We calculated daily cross correlation functions between the reported number of infected cases confirmed using polymerase chain reaction and the symptom-positive group captured by COOPERA. RESULTS: We analyzed 206,218 participants from three prefectures reported between March 5 and 30, 2020. The mean age of participants was 44.2 (standard deviation, 13.2) years. No symptoms were reported by 96.93% of participants, but there was a significantly positive correlation between the reported number of COVID-19 cases and self-reported fevers, suggesting that massive monitoring of fever might help to estimate the scale of the COVID-19 epidemic in real time. CONCLUSIONS: COOPERA is the first real-time system being used to monitor trends in COVID-19 in Japan and provides useful insights to assist political decisions to tackle the epidemic.
Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças/prevenção & controle , Monitoramento Epidemiológico , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Feminino , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
OBJECTIVE: To examine changes in plasma levels of CCL11, CCL2, and IL-10 after 10 controlled soccer headers. SETTING: Laboratory setting. PARTICIPANTS: Thirty-nine healthy soccer players with at least 3 years of soccer heading experience, between 18 and 26 years old, and enrolled at a large public university. DESIGN: In this randomized clinical trial using a soccer heading model, participants were randomized into the heading (n = 22) or kicking-control (n = 17) groups to perform 10 headers or kicks. MAIN MEASURES: Plasma levels of CCL11, CCL2, and IL-10 at preintervention and 0, 2, and 24 hours postintervention. RESULTS: Mixed-effects regression models did not reveal any significant group differences in changes of plasma CCL11, CCL2, or IL-10 levels from preintervention. Within the heading group, there was a statistically significant time by years of heading experience interaction with 2.0-pg/mL increase in plasma CCL11 each year of prior experience at 24 hours postintervention (P = .001). CONCLUSION: Findings from this study suggest that 10 soccer headers do not provoke an acute inflammatory response. However, the acute CCL11 response may be influenced by prior exposure to soccer headers, providing a precedent for future field studies that prospectively track head impact exposure and changes in CCL11.
Assuntos
Quimiocina CCL11/sangue , Quimiocina CCL2/sangue , Cabeça , Interleucina-10/sangue , Futebol , Adolescente , Adulto , Humanos , Projetos Piloto , Fatores de Tempo , Adulto JovemRESUMO
Subconcussive head impacts (SHI), defined as impacts to the cranium that do not result in concussion symptoms, are gaining traction as a major public health concern. The contribution of physiological factors such as physical exertion and muscle damage to SHI-dependent changes in neurological measures remains unknown. A prospective longitudinal study examined the association between physiological factors and SHI kinematics in 15 high school American football players over one season. Players wore a sensor-installed mouthguard for all practices and games, recording frequency and magnitude of all head impacts. Serum samples were collected at 12 time points (pre-season, pre- and post-game for five in-season games, and post-season) and were assessed for an isoenzyme of creatine kinase (CK-MM) primarily found in skeletal muscle. Physical exertion was estimated in the form of excess post-exercise oxygen consumption (EPOC) from heart rate data captured during the five games. Mixed-effect regression models indicated that head impact kinematics were significantly and positively associated with change in CK-MM but not EPOC. There was a significant and positive association between CK-MM and EPOC. These data suggest that when examining SHI, effects of skeletal muscle damage should be considered when using outcome measures that may have an interaction with muscle damage.
Assuntos
Futebol Americano/lesões , Cabeça/fisiopatologia , Músculo Esquelético/lesões , Esforço Físico/fisiologia , Adolescente , Fenômenos Biomecânicos , Concussão Encefálica/fisiopatologia , Creatina Quinase Forma MM/sangue , Futebol Americano/fisiologia , Humanos , Estudos Longitudinais , Masculino , Músculo Esquelético/enzimologia , Consumo de Oxigênio/fisiologia , Estudos Prospectivos , Estados UnidosRESUMO
We read the recent article in Psychology of Sport and Exercise by Liu et al. ("A randomized controlled trial of coordination exercise on cognitive function in obese adolescents") with great interest. Our interest in the article stemmed from the extraordinary differences in obesity-related outcomes reported in response to a rope-jumping intervention. We requested the raw data from the authors to confirm the results and, after the journal editors reinforced our request, the authors graciously provided us with their data. We share our evaluation of the original data herein, which includes concerns that weight and BMI loss by the intervention appears extraordinary in both magnitude and aspects of the distributions. We request that the authors address our findings by providing explanations of the extraordinary data or correcting any errors that may have occurred in the original report, as appropriate.
RESUMO
Certain major histocompatibility complex class I (MHC-I) alleles are associated with spontaneous control of viral replication in human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs). These cases of "elite" control of HIV/SIV replication are often immune-mediated, thereby providing a framework for studying anti-lentiviral immunity. In this study, we examined how vaccination impacts SIV replication in RMs expressing the MHC-I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ and 50% of Mamu-B*08+ RMs control chronic-phase viremia after SIVmac239 infection. Because CD8+ T cells targeting Mamu-B*08-restricted SIV epitopes have been implicated in virologic suppression in Mamu-B*08+ RMs, we investigated whether this might also be true for Mamu-B*17+ RMs. Two groups of Mamu-B*17+ RMs were vaccinated with genes encoding Mamu-B*17-restricted epitopes in Vif and Nef. These genes were delivered by themselves (group 1) or together with env (group 2). Group 3 included MHC-I-matched RMs and served as the control group. Surprisingly, the group 1 vaccine regimen had little effect on viral replication compared to group 3, suggesting that unlike Mamu-B*08+ RMs, preexisting SIV-specific CD8+ T cells alone do not facilitate long-term virologic suppression in Mamu-B*17+ RMs. Remarkably, however, 5/8 group 2 vaccinees controlled viremia to <15 viral RNA copies/ml soon after infection. No serological neutralizing activity against SIVmac239 was detected in group 2, although vaccine-elicited gp140-binding antibodies correlated inversely with nadir viral loads. Collectively, these data shed new light on the unique mechanism of elite control in Mamu-B*17+ RMs and implicate vaccine-induced, nonneutralizing anti-Env antibodies in the containment of immunodeficiency virus infection.IMPORTANCE A better understanding of the immune correlates of protection against HIV might facilitate the development of a prophylactic vaccine. Therefore, we investigated simian immunodeficiency virus (SIV) infection outcomes in rhesus macaques expressing the major histocompatibility complex class I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ macaques spontaneously controlled chronic phase viremia after SIV infection, an effect that may involve CD8+ T cells targeting Mamu-B*17-restricted SIV epitopes. We vaccinated Mamu-B*17+ macaques with genes encoding immunodominant epitopes in Vif and Nef alone (group 1) or together with env (group 2). Although neither vaccine regimen prevented SIV infection, 5/8 group 2 vaccinees controlled viremia to below detection limits shortly after infection. This outcome, which was not observed in group 1, was associated with vaccine-induced, nonneutralizing Env-binding antibodies. Together, these findings suggest a limited contribution of Vif- and Nef-specific CD8+ T cells for virologic control in Mamu-B*17+ macaques and implicate anti-Env antibodies in containment of SIV infection.
Assuntos
Produtos do Gene env/imunologia , Produtos do Gene nef/imunologia , Produtos do Gene vif/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Alelos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral , Viremia/prevenção & controle , Replicação ViralRESUMO
The ability to control lentivirus replication may be determined, in part, by the extent to which individual viral proteins are targeted by the immune system. Consequently, defining the antigens that elicit the most protective immune responses may facilitate the design of effective HIV-1 vaccines. Here we vaccinated four groups of rhesus macaques with a heterologous vector prime/boost/boost/boost (PBBB) regimen expressing the following simian immunodeficiency virus (SIV) genes: env, gag, vif, rev, tat, and nef (Group 1); env, vif, rev, tat, and nef (Group 2); gag, vif, rev, tat, and nef (Group 3); or vif, rev, tat, and nef (Group 4). Following repeated intrarectal challenges with a marginal dose of the neutralization-resistant SIVmac239 clone, vaccinees in Groups 1-3 became infected at similar rates compared to control animals. Unexpectedly, vaccinees in Group 4 became infected at a slower pace than the other animals, although this difference was not statistically significant. Group 1 exhibited the best post-acquisition virologic control of SIV infection, with significant reductions in both peak and chronic phase viremia. Indeed, 5/8 Group 1 vaccinees had viral loads of less than 2,000 vRNA copies/mL of plasma in the chronic phase. Vaccine regimens that did not contain gag (Group 2), env (Group 3), or both of these inserts (Group 4) were largely ineffective at decreasing viremia. Thus, vaccine-induced immune responses against both Gag and Env appeared to maximize control of immunodeficiency virus replication. Collectively, these findings are relevant for HIV-1 vaccine design as they provide additional insights into which of the lentiviral proteins might serve as the best vaccine immunogens.
Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Reto/virologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Macaca mulatta , Reto/imunologia , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genéticaRESUMO
HIV-1 mutations rapidly accumulate through genetic recombination events, which require the infection of a single cell by two virions (coinfection). Accumulation of mutations in the viral population may lead to immune escape and high-level drug resistance. The existence of cell subpopulations characterized by different susceptibility to HIV-1 infection has been proposed as an important parameter driving coinfection (Dang et al., 2004). While the mechanism and the quantification of HIV-1 coinfection have been recently investigated by mathematical models, the detailed dynamics of this process during cell-free infection remains elusive. In this study, we constructed ordinary differential equations considering the heterogeneity of target cell populations during cell-free infection in cell culture, and reproduced the cell culture experimental data. Our mathematical analyses showed that the presence of two differently susceptible target cell subpopulations could explain our experimental datasets, while increasing the number of subpopulations did not improve the fitting. In addition, we quantitatively demonstrated that cells infected by multiple viruses mainly accumulated from one cell subpopulation under cell-free infection conditions. In particular, the frequency of infection events in the more susceptible subpopulation was 6.11-higher than that from the other subpopulation, and 98.3% of coinfected cells emerged from the more susceptible subpopulation. Our mathematical-experimental approach is able to extract such a quantitative information, and can be easily applied to other virus infections.
Assuntos
Infecções por HIV/metabolismo , HIV-1/metabolismo , Modelos Biológicos , Linhagem Celular , HumanosRESUMO
BACKGROUND: It is believed that sexually active people, i.e. people having multiple or concurrent sexual partners, are at a high risk of sexually transmitted infections (STI), but they are likely to be more aware of the risk and may exhibit greater fraction of the use of condom. The purpose of the present study is to examine the correlation between condom use and sexual contact pattern and clarify its impact on the transmission dynamics of STIs using a mathematical model. METHODS: The definition of sexual contact pattern can be broad, but we focus on two specific aspects: (i) type of partnership (i.e. steady or casual partnership) and (ii) existence of concurrency (i.e. with single or multiple partners). Systematic review and meta-analysis of published studies are performed, analysing literature that epidemiologically examined the relationship between condom use and sexual contact pattern. Subsequently, we employ an epidemiological model and compute the reproduction number that accounts for with and without concurrency so that the corresponding coverage of condom use and its correlation with existence of concurrency can be explicitly investigated using the mathematical model. Combining the model with parameters estimated from the meta-analysis along with other assumed parameters, the impact of varying the proportion of population with multiple partners on the reproduction number is examined. RESULTS: Based on systematic review, we show that a greater number of people used condoms during sexual contact with casual partners than with steady partners. Furthermore, people with multiple partners use condoms more frequently than people with a single partner alone. Our mathematical model revealed a positive relationship between the effective reproduction number and the proportion of people with multiple partners. Nevertheless, the association was reversed to be negative by employing a slightly greater value of the relative risk of condom use for people with multiple partners than that empirically estimated. CONCLUSIONS: Depending on the correlation between condom use and the existence of concurrency, association between the proportion of people with multiple partners and the reproduction number can be reversed, suggesting the sexually active population is not necessary a primary target population to encourage condom use (i.e., sexually less active individuals could equivalently be a target in some cases).
Assuntos
Preservativos/estatística & dados numéricos , Modelos Teóricos , Comportamento Sexual/psicologia , Parceiros Sexuais/psicologia , Infecções Sexualmente Transmissíveis/prevenção & controle , Infecções Sexualmente Transmissíveis/psicologia , Feminino , Humanos , Masculino , Modelos PsicológicosRESUMO
INTRODUCTION: Studies in US Hispanic adults indicate no deleterious association between obesity and death. We tested the hypothesis that accounting for weight history would provide more insight into this nonassociation. METHODS: We used the National Health and Nutrition Examination Survey (NHANES) to examine associations between maximum lifetime body mass index (BMI) and all-cause and cause-specific mortality among US-residing Mexican American adults. BMI was classified as underweight (<18.5 kg/m2), normal weight (18.5-24.9), overweight (25.0-29.9), obese class I (30.0-34.9), and obese class II (≥35.0). We used Cox proportional hazards to examine the association between maximum lifetime BMI and BMI at survey and all-cause and specific causes of death (ie, cardiovascular disease, cancer, diabetes, and other) controlling for age, sex, and smoking in 6,242 Mexican American adults enrolled in NHANES III (1988-1994) and NHANES 1999-2010. RESULTS: Mexican Americans categorized as obese class II at maximum lifetime and time of survey had increased risk of all-cause mortality (hazard ratio [HR], 2.12; 95% confidence interval [CI], 1.54 - 2.93 and HR, 1.52; 95% CI, 1.10-2.10). Those reporting a maximum lifetime BMI of class I or class II obesity but who were classified as normal weight at survey had increased risk of all-cause mortality (HR = 2.49; 95% CI, 1.72-3.61 and HR = 3.56; 95% CI, 1.15-11.06, respectively). CONCLUSION: Increased all-cause mortality risk in Mexican Americans with a lifetime BMI of 35 or greater refutes prior studies, suggesting that maximum lifetime BMI should be included when evaluating obesity-mortality associations in this population.
Assuntos
Índice de Massa Corporal , Americanos Mexicanos , Inquéritos Nutricionais , Obesidade/epidemiologia , Causas de Morte , Feminino , Humanos , Masculino , Estados UnidosRESUMO
UNLABELLED: Certain major histocompatibility complex class I (MHC-I) alleles (e.g., HLA-B*27) are enriched among human immunodeficiency virus type 1 (HIV-1)-infected individuals who suppress viremia without treatment (termed "elite controllers" [ECs]). Likewise, Mamu-B*08 expression also predisposes rhesus macaques to control simian immunodeficiency virus (SIV) replication. Given the similarities between Mamu-B*08 and HLA-B*27, SIV-infected Mamu-B*08(+) animals provide a model to investigate HLA-B*27-mediated elite control. We have recently shown that vaccination with three immunodominant Mamu-B*08-restricted epitopes (Vif RL8, Vif RL9, and Nef RL10) increased the incidence of elite control in Mamu-B*08(+) macaques after challenge with the pathogenic SIVmac239 clone. Furthermore, a correlate analysis revealed that CD8(+) T cells targeting Nef RL10 was correlated with improved outcome. Interestingly, this epitope is conserved between SIV and HIV-1 and exhibits a delayed and atypical escape pattern. These features led us to postulate that a monotypic vaccine-induced Nef RL10-specific CD8(+) T-cell response would facilitate the development of elite control in Mamu-B*08(+) animals following repeated intrarectal challenges with SIVmac239. To test this, we vaccinated Mamu-B*08(+) animals with nef inserts in which Nef RL10 was either left intact (group 1) or disrupted by mutations (group 2). Although monkeys in both groups mounted Nef-specific cellular responses, only those in group 1 developed Nef RL10-specific CD8(+) T cells. These vaccine-induced effector memory CD8(+) T cells did not prevent infection. Escape variants emerged rapidly in the group 1 vaccinees, and ultimately, the numbers of ECs were similar in groups 1 and 2. High-frequency vaccine-induced CD8(+) T cells focused on a single conserved epitope and therefore did not prevent infection or increase the incidence of elite control in Mamu-B*08(+) macaques. IMPORTANCE: Since elite control of chronic-phase viremia is a classic example of an effective immune response against HIV/SIV, elucidating the basis of this phenomenon may provide useful insights into how to elicit such responses by vaccination. We have previously established that vaccine-induced CD8(+) T-cell responses against three immunodominant epitopes can increase the incidence of elite control in SIV-infected Mamu-B*08(+) rhesus macaquesa model of HLA-B*27-mediated elite control. Here, we investigated whether a monotypic vaccine-induced CD8(+) T-cell response targeting the conserved "late-escaping" Nef RL10 epitope can increase the incidence of elite control in Mamu-B*08(+) monkeys. Surprisingly, vaccine-induced Nef RL10-specific CD8(+) T cells selected for variants within days after infection and, ultimately, did not facilitate the development of elite control. Elite control is, therefore, likely to involve CD8(+) T-cell responses against more than one epitope. Together, these results underscore the complexity and multidimensional nature of virologic control of lentivirus infection.