Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nature ; 617(7959): 61-66, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37076625

RESUMO

Experiments on disordered alloys1-3 suggest that spin glasses can be brought into low-energy states faster by annealing quantum fluctuations than by conventional thermal annealing. Owing to the importance of spin glasses as a paradigmatic computational testbed, reproducing this phenomenon in a programmable system has remained a central challenge in quantum optimization4-13. Here we achieve this goal by realizing quantum-critical spin-glass dynamics on thousands of qubits with a superconducting quantum annealer. We first demonstrate quantitative agreement between quantum annealing and time evolution of the Schrödinger equation in small spin glasses. We then measure dynamics in three-dimensional spin glasses on thousands of qubits, for which classical simulation of many-body quantum dynamics is intractable. We extract critical exponents that clearly distinguish quantum annealing from the slower stochastic dynamics of analogous Monte Carlo algorithms, providing both theoretical and experimental support for large-scale quantum simulation and a scaling advantage in energy optimization.

2.
Nat Commun ; 12(1): 1113, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602927

RESUMO

The promise of quantum computing lies in harnessing programmable quantum devices for practical applications such as efficient simulation of quantum materials and condensed matter systems. One important task is the simulation of geometrically frustrated magnets in which topological phenomena can emerge from competition between quantum and thermal fluctuations. Here we report on experimental observations of equilibration in such simulations, measured on up to 1440 qubits with microsecond resolution. By initializing the system in a state with topological obstruction, we observe quantum annealing (QA) equilibration timescales in excess of one microsecond. Measurements indicate a dynamical advantage in the quantum simulation compared with spatially local update dynamics of path-integral Monte Carlo (PIMC). The advantage increases with both system size and inverse temperature, exceeding a million-fold speedup over an efficient CPU implementation. PIMC is a leading classical method for such simulations, and a scaling advantage of this type was recently shown to be impossible in certain restricted settings. This is therefore an important piece of experimental evidence that PIMC does not simulate QA dynamics even for sign-problem-free Hamiltonians, and that near-term quantum devices can be used to accelerate computational tasks of practical relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA