Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 156: 105581, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035662

RESUMO

Amyloid-ß (Aß) plays a central role in the development and progression of Alzheimer's disease (AD) with Aß oligomers representing the most toxic species. The all-d-enantiomeric peptide RD2, which recently successfully completed clinical phase I, specifically eliminates Aß oligomers in vitro as well as in vivo and improves cognitive deficits in various transgenic AD mouse models even after oral administration. To further enhance the oral absorption of RD2, folic acid has been conjugated to the d-peptide promoting an endocytosis-mediated uptake via a folate receptor located in the intestine. Two different conjugation strategies were selected to obtain prodrugs with folic acid being cleaved after intestinal absorption releasing unmodified RD2 in order to enable RD2's unaltered systemic efficacy. Both conjugates remained stable in simulated gastrointestinal fluids. But only one of them was suitable as prodrug as it was cleaved to RD2 in vitro in human blood plasma and liver microsomes and in vivo in mice after intravenous injection leading to a systemic release of RD2. Furthermore, the conjugate's permeability in vitro and after oral administration in mice was strongly enhanced compared to unconjugated RD2 demonstrating the prodrug's functionality. However, the conjugate seemed to have impaired the mice's wellbeing shortly after oral administration possibly resulting from strain-specific hypersensitivity to folic acid. Nevertheless, we assume that the prodrug is actually non-toxic, especially in lower concentrations as verified by a cell viability test. Furthermore, lower dosages can be applied with unaltered efficacy due to its enhanced oral absorption.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Animais , Ácido Fólico , Camundongos , Camundongos Transgênicos , Estereoisomerismo
2.
Sci Rep ; 9(1): 5715, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952881

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder leading to dementia. Aggregation of the amyloid-ß peptide (Aß) plays an important role in the disease, with Aß oligomers representing the most toxic species. Previously, we have developed the Aß oligomer eliminating therapeutic compound RD2 consisting solely of D-enantiomeric amino acid residues. RD2 has been described to have an oral bioavailability of more than 75% and to improve cognition in transgenic Alzheimer's disease mouse models after oral administration. In the present study, we further examined the stability of RD2 in simulated gastrointestinal fluids, blood plasma and liver microsomes. In addition, we have examined whether RD2 is a substrate for the human D-amino acid oxidase (hDAAO). Furthermore, metabolite profiles of RD2 incubated in human, rodent and non-rodent liver microsomes were compared across species to search for human-specific metabolites that might possibly constitute a threat when applying the compound in humans. RD2 was remarkably resistant against metabolization in all investigated media and not converted by hDAAO. Moreover, RD2 did not influence the activity of any of the tested enzymes. In conclusion, the high stability and the absence of relevant human-specific metabolites support RD2 to be safe for oral administration in humans.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Oligopeptídeos/farmacocinética , Animais , Meios de Cultura , Trato Gastrointestinal/metabolismo , Humanos , Fígado/metabolismo , Ratos
3.
Artigo em Inglês | MEDLINE | ID: mdl-29248770

RESUMO

During preclinical drug development, a method for quantification of unlabeled compounds in blood plasma samples from treatment or pharmacokinetic studies in mice is required. In the current work, a rapid, specific, sensitive and validated liquid chromatography mass-spectrometric UHPLC-ESI-QTOF-MS method was developed for the quantification of the therapeutic compound RD2 in mouse plasma. RD2 is an all-D-enantiomeric peptide developed for the treatment of Alzheimer's disease, a progressive neurodegenerative disease finally leading to dementia. Due to RD2's highly hydrophilic properties, the sample preparation and the chromatographic separation and quantification were very challenging. The chromatographic separation of RD2 and its internal standard were accomplished on an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm particle size) within 6.5 min at 50 °C with a flow rate of 0.5 mL/min. Mobile phases consisted of water and acetonitrile with 1% formic acid and 0.025% heptafluorobutyric acid, respectively. Ions were generated by electrospray ionization (ESI) in the positive mode and the peptide was quantified by QTOF-MS. The developed extraction method for RD2 from mouse plasma revealed complete recovery. The linearity of the calibration curve was in the range of 5.3 ng/mL to 265 ng/mL (r2 > 0.999) with a lower limit of detection (LLOD) of 2.65 ng/mL and a lower limit of quantification (LLOQ) of 5.3 ng/mL. The intra-day and inter-day accuracy and precision of RD2 in plasma ranged from -0.54% to 2.21% and from 1.97% to 8.18%, respectively. Moreover, no matrix effects were observed and RD2 remained stable in extracted mouse plasma at different conditions. Using this validated bioanalytical method, plasma samples of unlabeled RD2 or placebo treated mice were analyzed. The herein developed UHPLC-ESI-QTOF-MS method is a suitable tool for the quantitative analysis of unlabeled RD2 in plasma samples of treated mice.


Assuntos
Peptídeos beta-Amiloides/sangue , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/isolamento & purificação , Animais , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Modelos Lineares , Masculino , Camundongos , Camundongos Transgênicos , Oligonucleotídeos/isolamento & purificação , Oligonucleotídeos/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Estereoisomerismo
4.
J Alzheimers Dis ; 64(3): 859-873, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29966196

RESUMO

Diffusible amyloid-ß (Aß) oligomers are currently presumed to be the most cytotoxic Aß assembly and held responsible to trigger the pathogenesis of Alzheimer's disease (AD). Thus, Aß oligomers are a prominent target in AD drug development. Previously, we reported on our solely D-enantiomeric peptide D3 and its derivatives as AD drug candidates. Here, we compare one of the most promising D3 derivatives, ANK6, with its tandem version (tANK6), and its head-to-tail cyclized isoform (cANK6r). In vitro tests investigating the D-peptides' potencies to inhibit Aß aggregation, eliminate Aß oligomers, and reduce Aß-induced cytotoxicity revealed that all three D-peptides efficiently target Aß. Subsequent preclinical pharmacokinetic studies of the three all-D-peptides in wildtype mice showed promising blood-brain barrier permeability with cANK6r yielding the highest levels in brain. The peptides' potencies to lower Aß toxicity and their remarkable brain/plasma ratios make them promising AD drug candidates.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Oligopeptídeos/farmacocinética , Oligopeptídeos/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/líquido cefalorraquidiano , Oligopeptídeos/química , Células PC12/efeitos dos fármacos , Células PC12/metabolismo , Fragmentos de Peptídeos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/farmacocinética , Ratos , Estereoisomerismo , Distribuição Tecidual/efeitos dos fármacos , Trítio/líquido cefalorraquidiano , Trítio/farmacocinética
5.
Eur J Pharm Sci ; 107: 203-207, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28711713

RESUMO

The aggregation of the amyloid ß protein (Aß) plays an important role in the pathology of Alzheimer's disease. Previously, we have developed the all-d-enantiomeric peptide D3, which is able to eliminate neurotoxic Aß oligomers in vitro and improve cognition in a transgenic Alzheimer's disease mouse model in vivo even after oral administration. d-Peptides are expected to be more resistant against enzymatic proteolysis compared to their l-enantiomeric equivalents, and indeed, a pharmacokinetic study with tritiated D3 revealed the oral bioavailability to be about 58%. To further investigate the underlying properties, we examined the stability of D3 in comparison to its corresponding all-l-enantiomeric mirror image l-D3 in media simulating the gastrointestinal tract, blood and liver. Potential metabolization was followed by reversed-phase high-performance liquid chromatography. In simulated gastric fluid, D3 remained almost completely stable (89%) within 24h, while 70% of l-D3 was degraded within the same time period. Notably, in simulated intestinal fluid, D3 also remained stable (96%) for 24h, whereas l-D3 was completely metabolized within seconds. In human plasma and human liver microsomes, l-D3 was metabolized several hundred times faster than D3. The remarkably high stability may explain the high oral bioavailability seen in previous studies allowing oral administration of the drug candidate. Thus, all-d-enantiomeric peptides may represent a promising new compound class for drug development.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Oligopeptídeos/metabolismo , Administração Oral , Peptídeos beta-Amiloides/química , Feminino , Suco Gástrico/metabolismo , Humanos , Secreções Intestinais/metabolismo , Microssomos Hepáticos/metabolismo , Oligopeptídeos/química , Plasma/metabolismo
6.
ACS Chem Neurosci ; 8(9): 1889-1900, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28581708

RESUMO

Amyloid-beta (Aß) oligomers are thought to be causative for the development and progression of Alzheimer's disease (AD). Starting from the Aß oligomer eliminating d-enantiomeric peptide D3, we developed and applied a two-step procedure based on peptide microarrays to identify D3 derivatives with increased binding affinity and specificity for monomeric Aß(1-42) to further enhance the Aß oligomer elimination efficacy. Out of more than 1000 D3 derivatives, we selected seven novel d-peptides, named ANK1 to ANK7, and characterized them in more detail in vitro. All ANK peptides bound to monomeric Aß(1-42), eliminated Aß(1-42) oligomers, inhibited Aß(1-42) fibril formation, and reduced Aß(1-42)-induced cytotoxicity more efficiently than D3. Additionally, ANK6 completely inhibited the prion-like propagation of preformed Aß(1-42) seeds and showed a nonsignificant tendency for improving memory performance of tg-APPSwDI mice after i.p. application for 4 weeks. This supports the hypothesis that stabilization of Aß monomers and thereby induced elimination of Aß oligomers is a suitable therapeutic strategy.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/ultraestrutura , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Ligação Competitiva , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Descoberta de Drogas , Feminino , Humanos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/ultraestrutura , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Proteínas Recombinantes/ultraestrutura
7.
Sci Rep ; 7(1): 16275, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176708

RESUMO

While amyloid-ß protein (Aß) aggregation into insoluble plaques is one of the pathological hallmarks of Alzheimer's disease (AD), soluble oligomeric Aß has been hypothesized to be responsible for synapse damage, neurodegeneration, learning, and memory deficits in AD. Here, we investigate the in vitro and in vivo efficacy of the D-enantiomeric peptide RD2, a rationally designed derivative of the previously described lead compound D3, which has been developed to efficiently eliminate toxic Aß42 oligomers as a promising treatment strategy for AD. Besides the detailed in vitro characterization of RD2, we also report the results of a treatment study of APP/PS1 mice with RD2. After 28 days of treatment we observed enhancement of cognition and learning behaviour. Analysis on brain plaque load did not reveal significant changes, but a significant reduction of insoluble Aß42. Our findings demonstrate that RD2 was significantly more efficient in Aß oligomer elimination in vitro compared to D3. Enhanced cognition without reduction of plaque pathology in parallel suggests that synaptic malfunction due to Aß oligomers rather than plaque pathology is decisive for disease development and progression. Thus, Aß oligomer elimination by RD2 treatment may be also beneficial for AD patients.


Assuntos
Placa Amiloide/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Camundongos , Peptídeos/química , Peptídeos/uso terapêutico , Placa Amiloide/tratamento farmacológico
9.
PLoS One ; 11(2): e0147470, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840229

RESUMO

Alzheimer´s disease is the most prominent type of dementia and currently no causative treatment is available. According to recent studies, oligomeric species of the amyloid beta (Aß) peptide appear to be the most toxic Aß assemblies. Aß monomers, however, may be not toxic per se and may even have a neuroprotective role. Here we describe a competitive mirror image phage display procedure that allowed us to identify preferentially Aß1-42 monomer binding and thereby stabilizing peptides, which destabilize and thereby eliminate toxic oligomer species. One of the peptides, called Mosd1 (monomer specific d-peptide 1), was characterized in more detail. Mosd1 abolished oligomers from a mixture of Aß1-42 species, reduced Aß1-42 toxicity in cell culture, and restored the physiological phenotype in neuronal cells stably transfected with the gene coding for human amyloid precursor protein.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Técnicas de Visualização da Superfície Celular , Peptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas , Secretases da Proteína Precursora do Amiloide/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos
10.
Mol Neurodegener ; 7: 55, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23164356

RESUMO

BACKGROUND: Recent studies suggest that the chemotactic G-protein-coupled-receptor (GPCR) formyl-peptide-receptor-like-1 (FPRL1) and the receptor-for-advanced-glycation-end-products (RAGE) play an important role in the inflammatory response involved in neurodegenerative disorders such as Alzheimer's disease (AD).Therefore, the expression and co-localisation of mouse formyl peptide receptor (mFPR) 1 and 2 as well as RAGE in an APP/PS1 transgenic mouse model using immunofluorescence and real-time RT-PCR were analysed. The involvement of rat or human FPR1/FPRL1 (corresponds to mFPR1/2) and RAGE in amyloid-ß 1-42 (Aß1-42)-induced signalling were investigated by extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation. Furthermore, the cAMP level in primary rat glial cells (microglia and astrocytes) and transfected HEK 293 cells was measured. Formyl peptide receptors and RAGE were inhibited by a small synthetic antagonist WRW4 and an inactive receptor variant delta-RAGE, lacking the intracytoplasmatic domains. RESULTS: We demonstrated a strong increase of mFPR1/2 and RAGE expression in the cortex and hippocampus of APP/PS1 transgenic mice co-localised to the glial cells. In addition, the Aß1-42-induced signal transduction is dependant on FPRL1, but also on FPR1. For the first time, we have shown a functional interaction between FPRL1/FPR1 and RAGE in RAGE ligands S100B- or AGE-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition a possible physical interaction between FPRL1 as well as FPR1 and RAGE was shown with co-immunoprecipitation and fluorescence microscopy. CONCLUSIONS: The results suggest that both formyl peptide receptors play an essential role in Aß1-42-induced signal transduction in glial cells. The interaction with RAGE could explain the broad ligand spectrum of formyl peptide receptors and their important role for inflammation and the host defence against infections.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Neuroglia/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/fisiologia , Doença de Alzheimer/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Imunofluorescência , Humanos , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptor para Produtos Finais de Glicação Avançada , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA