Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(8): 081002, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457721

RESUMO

We introduce and study the first class of signals that can probe the dark matter in mesogenesis, which will be observable at current and upcoming large volume neutrino experiments. The well-motivated mesogenesis scenario for generating the observed matter-antimatter asymmetry necessarily has dark matter charged under the baryon number. Interactions of these particles with nuclei can induce nucleon decay with kinematics differing from spontaneous nucleon decay. We calculate the rate for this process and develop a simulation of the signal that includes important distortions due to nuclear effects. We estimate the sensitivity of DUNE, Super-Kamiokande, Hyper-Kamiokande, and JUNO to this striking signal.

2.
Rep Prog Phys ; 86(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36279851

RESUMO

Rare meson decays are among the most sensitive probes of both heavy and light new physics. Among them, new physics searches using kaons benefit from their small total decay widths and the availability of very large datasets. On the other hand, useful complementary information is provided by hyperon decay measurements. We summarize the relevant phenomenological models and the status of the searches in a comprehensive list of kaon and hyperon decay channels. We identify new search strategies for under-explored signatures, and demonstrate that the improved sensitivities from current and next-generation experiments could lead to a qualitative leap in the exploration of light dark sectors.

3.
Phys Rev Lett ; 130(3): 031803, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763377

RESUMO

We estimate the maximum direct detection cross section for sub-GeV dark matter (DM) scattering off nucleons. For DM masses in the range 10 keV-100 MeV, cross sections greater than 10^{-36}-10^{-30} cm^{2} seem implausible. We present a DM candidate which realizes this maximum cross section: highly interactive particle relics (HYPERs). After HYPERs freeze-in, a dark sector phase transition decreases the mediator's mass. This increases the HYPER's direct detection cross section without impacting its abundance or measurements of big bang nucleosynthesis and the cosmic microwave background.

4.
Phys Rev Lett ; 124(18): 181301, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441951

RESUMO

We present a new class of direct detection signals; absorption of fermionic dark matter. We enumerate the operators through dimension six which lead to fermionic absorption, study their direct detection prospects, and summarize additional constraints on their suppression scale. Such dark matter is inherently unstable as there is no symmetry which prevents dark matter decays. Nevertheless, we show that fermionic dark matter absorption can be observed in direct detection and neutrino experiments while ensuring consistency with the observed dark matter abundance and required lifetime. For dark matter masses well below the GeV scale, dedicated searches for these signals at current and future experiments can probe orders of magnitude of unexplored parameter space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA