Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Tipo de estudo
Intervalo de ano de publicação
1.
Neurotoxicology ; 86: 37-51, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216684

RESUMO

Melamine is a chemical substance used as a food adulterant because of its high nitrogen content; it is known to induce neurotoxicity, thereby adversely affecting the central nervous system. The biocompatibility, bioavailability, lower toxicity, and the large surface area of nanosized selenium relative to its other forms indicate that selenium nanoparticles (SeNPs) have a potential ameliorative effect against melamine-induced neurotoxicity. In this study, we tested this hypothesis using 40 adult male albino rats that were randomly assigned into four groups (n = 10 per group): group I rats served as the untreated negative controls and were fed with standard diet and distilled water; group II rats were orally treated with melamine (300 mg/kg body weight/d); group III rats orally received melamine (300 mg/kg body weight/d) and SeNPs (2 mg/kg body weight/d); and group IV rats received SeNPs only (2 mg/kg body weight/d) for 28 days. Blood and brain samples were collected from all rats and processed for biochemical, histopathological, and immunohistochemical investigations. SeNPs were encapsulated in starch as a natural stabilizer and a size-controlling agent (SeNP@starch). The prepared SeNPs were characterized using different techniques. Inductively coupled plasma-optical emission spectrometry (ICP-OES) indicated that the percentage of selenium loaded in starch was 1.888 %. Powder x-ray diffractometer (XRD) was used to investigate the crystalline structure of the Se-NP@starch, to be tubular and composed of amorphous starch as well as metallic selenium. Thermogravimetric analysis confirmed the thermal stability of the product and determined the interactions among the different components. Transmission electron microscope demonstrated the spherical shape of SeNPs and their dispersion into starch surface as well as evaluating their size in nanoscale (range 20-140 nm). Our results revealed that the melamine- exposed rats had significantly elevated in malondialdehyde levels, significantly reduced in total antioxidant capacity, down-regulated expression of the antioxidant related genes Nrf2 (nuclear factor erythroid 2-related factor 2) and GPx (glutathione peroxidase), as well as up-regulated expression of the apoptosis-related gene Bax (B-cell lymphoma 2-associated X protein), with down regulation of Bcl-2 (B-cell lymphoma 2). Histopathological examination exhibited several alterations in the cerebrum, cerebellum, and hippocampus of the treated rats compared with the controls. Neuronal degeneration, vacuolation of the neuropils, and pericellular and perivascular spaces were observed. In addition, the pyramidal and granular cell layers of the hippocampus and cerebellum, respectively, were found to have significantly reduced thickness. Furthermore, a significant decrease in the percentage area of the glial fibrillary acidic protein and a significant increase in the percentage area of caspase-3 were noted. On the other hand, co-treatment with SeNPs partially ameliorated these alterations. A significant reduction in malondialdehyde levels; a non- significant elevation in total antioxidant capacity; up-regulation, upregulation of Nrf2, GPx, and Bcl-2 and downregulation of Bax were recorded. Neuronal degeneration, vacuolation of neuropils, and pericellular spaces were reduced. The pyramidal and granular cell layers restored their normal thickness. The percentage area of the glial fibrillary acidic protein significantly increased, whereas that of caspase-3 significantly decreased. In conclusion, SeNPs have an ameliorative effect against melamine-induced neurotoxicity in albino rats.


Assuntos
Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Selênio/administração & dosagem , Triazinas/toxicidade , Fatores Etários , Animais , Antioxidantes/química , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Nanopartículas/química , Estresse Oxidativo/fisiologia , Ratos , Selênio/química
2.
Int J Biol Macromol ; 191: 792-802, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34597692

RESUMO

Melamine and its analogues are illegally added to raise the apparent protein content in foods. The elevated concentrations of these compounds cause adverse effects in humans and animals. In this contribution, the protective effects of the synthesized starch-stabilized selenium nanoparticles (Se-NPs@starch) on melamine-induced hepato-renal toxicity have been systematically investigated. The Se-NPs@starch were characterized by X-ray photoelectron spectroscopy (XPS) analysis, energy dispersive spectroscopy (EDS) mapping analysis, TEM, and FT-IR. Starch plays a crucial role in the stabilization and dispersion of Se NPs, as noticed from the TEM and EDS investigations. Furthermore, the atomic ratio of Se distribution over the starch surface is approximately 1.67%. The current study was conducted on four groups of adult male rats, and the oral daily treatments for 28 days were as follows: group I served as control, group II received Se-NPs@starch, group III was exposed to melamine, while group IV was treated with melamine and Se-NPs@starch. The results reveal a significant alteration in the histoarchitecture of both hepatic and renal tissues induced by melamine. Furthermore, elevated liver and kidney function markers, high malondialdehyde, and increased expression levels of apoptosis-related genes besides a reduction in GSH and expression levels of antioxidant genes were observed in the melamine-exposed group. Interestingly, the administration of the Se-NPs@starch resulted in remarkable protection of rats against melamine-induced toxicity through increasing the antioxidant capacity and inhibiting oxidative damage. Collectively, this study provides affordable starch-stabilized Se-NPs with potent biological activity, making them auspicious candidates for prospective biomedical applications.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Nanopartículas/química , Selênio/química , Amido/química , Triazinas/toxicidade , Animais , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nanopartículas/uso terapêutico , Estresse Oxidativo , Ratos
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124990, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39186874

RESUMO

Kaolin, a naturally occurring clay mineral renowned for its distinctive properties, holds significant importance across various industries. The integration of dimethyl sulfoxide (DMSO) into kaolin matrices, both in the presence and absence of water, has been extensively explored for its potential to enhance material characteristics. Addressing debates surrounding the proposed adsorption mechanism for the type I structure of DMSO, this study undertook a comprehensive physicochemical characterization of DMSO-kaolin complexes (DMSO-KCs) derived from untreated (UnK) and HCl-treated (HK) Egyptian ore, with a focus on elucidating the loading mechanism facilitated by water. Key insights gleaned from electrical conductivity, dielectric constant, and Fine Testing Technology - Fourier-transform infrared (FTT-FTIR) measurements, shedding light on the bonding nature of DMSO-KCs. FTT-FTIR analysis revealed two stages of water departure at 180 °C, with the final stage coinciding with the release of pyrolysis gases, confirming the catalytic degradation of DMSO. Through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), two distinct bonding types of DMSO molecules with kaolinite were identified: amorphous adsorbed (type I) and lattice-oriented intercalated (type II). Electrical characteristic evaluations within the temperature range of room temperature (RT) to 260 °C and frequency range of 42 Hz-1 MHz revealed that DMSO intercalation enhances the electrical properties of kaolin. Hydrated DMSO-KCs exhibited higher values of σac and ɛ' compared to non-hydrated samples. The activation energy (Ea) values for HCl-treated samples were smaller than those of untreated ones. Alternating current (AC) conductivity analysis indicated predominantly ionic behavior with frequency and temperature dependency in both HCl-treated and untreated kaolin. Our findings substantiate the adsorption mechanism of Type I DMSO, highlighting its amorphous nature, instability, and catalytic degradation over time, in contrast to the intercalated type II. This elucidation is pivotal for understanding the behavior of DMSO-KCs across diverse applications, including electronics, ceramics, and materialsscience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA