Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Mol Cell ; 67(6): 1059-1067.e4, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28867294

RESUMO

YTHDF2 binds and destabilizes N6-methyladenosine (m6A)-modified mRNA. The extent to which this branch of m6A RNA-regulatory pathway functions in vivo and contributes to mammalian development remains unknown. Here we find that YTHDF2 deficiency is partially permissive in mice and results in female-specific infertility. Using conditional mutagenesis, we demonstrate that YTHDF2 is autonomously required within the germline to produce MII oocytes that are competent to sustain early zygotic development. Oocyte maturation is associated with a wave of maternal RNA degradation, and the resulting relative changes to the MII transcriptome are integral to oocyte quality. The loss of YTHDF2 results in the failure to regulate transcript dosage of a cohort of genes during oocyte maturation, with enrichment observed for the YTHDF2-binding consensus and evidence of m6A in these upregulated genes. In summary, the m6A-reader YTHDF2 is an intrinsic determinant of mammalian oocyte competence and early zygotic development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Meiose , Oócitos/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Transcriptoma , Zigoto/metabolismo , Animais , Sítios de Ligação , Feminino , Fertilidade , Genótipo , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/patologia , Fenótipo , Ligação Proteica , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Zigoto/patologia
2.
PLoS Pathog ; 18(4): e1009854, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446919

RESUMO

Interactions between pathogens, host microbiota and the immune system influence many physiological and pathological processes. In the 20th century, widespread dermal vaccination with vaccinia virus (VACV) led to the eradication of smallpox but how VACV interacts with the microbiota and whether this influences the efficacy of vaccination are largely unknown. Here we report that intradermal vaccination with VACV induces a large increase in the number of commensal bacteria in infected tissue, which enhance recruitment of inflammatory cells, promote tissue damage and influence the host response. Treatment of vaccinated specific-pathogen-free (SPF) mice with antibiotic, or infection of genetically-matched germ-free (GF) animals caused smaller lesions without alteration in virus titre. Tissue damage correlated with enhanced neutrophil and T cell infiltration and levels of pro-inflammatory tissue cytokines and chemokines. One month after vaccination, GF and both groups of SPF mice had equal numbers of VACV-specific CD8+ T cells and were protected from disease induced by VACV challenge, despite lower levels of VACV-neutralising antibodies observed in GF animals. Thus, skin microbiota may provide an adjuvant-like stimulus during vaccination with VACV and influence the host response to vaccination.


Assuntos
Varíola , Vacínia , Animais , Anticorpos Antivirais , Bactérias , Camundongos , Varíola/prevenção & controle , Vacinação , Vaccinia virus
3.
PLoS Comput Biol ; 19(11): e1011498, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934729

RESUMO

Public-domain availability for bioinformatics software resources is a key requirement that ensures long-term permanence and methodological reproducibility for research and development across the life sciences. These issues are particularly critical for widely used, efficient, and well-proven methods, especially those developed in research settings that often face funding discontinuities. We re-launch a range of established software components for computational genomics, as legacy version 1.0.1, suitable for sequence matching, masking, searching, clustering and visualization for protein family discovery, annotation and functional characterization on a genome scale. These applications are made available online as open source and include MagicMatch, GeneCAST, support scripts for CoGenT-like sequence collections, GeneRAGE and DifFuse, supported by centrally administered bioinformatics infrastructure funding. The toolkit may also be conceived as a flexible genome comparison software pipeline that supports research in this domain. We illustrate basic use by examples and pictorial representations of the registered tools, which are further described with appropriate documentation files in the corresponding GitHub release.


Assuntos
Genômica , Software , Reprodutibilidade dos Testes , Genômica/métodos , Biologia Computacional/métodos , Genoma
4.
Br J Cancer ; 129(9): 1451-1461, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37789102

RESUMO

BACKGROUND: MiR-371~373 and miR-302/367 cluster over-expression occurs in all malignant germ cell tumours (GCTs), regardless of age (paediatric/adult), site (gonadal/extragonadal), or subtype [seminoma, yolk sac tumour (YST), embryonal carcinoma (EC)]. Six of eight microRNAs from these clusters contain the seed sequence 'AAGUGC', determining mRNA targeting. Here we sought to identify the significance of these observations by targeting these microRNAs functionally. METHODS: We targeted miR-371~373 and/or miR-302/367 clusters in malignant GCT cell lines, using CRISPR-Cas9, gapmer primary miR-302/367 transcript inhibition, and peptide nucleic acid (PNA) or locked nucleic acid (LNA)-DNA inhibition targeting miR-302a-d-3p, and undertook relevant functional assays. RESULTS: MiR-302/367 cluster microRNAs made the largest contribution to AAGUGC seed abundance in malignant GCT cells, regardless of subtype (seminoma/YST/EC). Following the unsuccessful use of CRISPR-Cas9, gapmer, and PNA systems, LNA-DNA-based targeting resulted in growth inhibition in seminoma and YST cells. This was associated with the de-repression of multiple mRNAs targeted by AAGUGC seed-containing microRNAs, with pathway analysis confirming predominant disruption of Rho-GTPase signalling, vesicle organisation/transport, and cell cycle regulation, findings corroborated in clinical samples. Further LNA-DNA inhibitor studies confirmed direct cell cycle effects, with an increase of cells in G0/G1-phase and a decrease in S-phase. CONCLUSION: Targeting of specific miR-371~373 and miR-302/367 microRNAs in malignant GCTs demonstrated their functional significance, with growth inhibition mediated through cell cycle disruption.


Assuntos
MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Seminoma , Neoplasias Testiculares , Masculino , Adulto , Humanos , Criança , MicroRNAs/genética , Seminoma/genética , Neoplasias Testiculares/patologia , Ciclo Celular , DNA
5.
PLoS Pathog ; 17(8): e1009875, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432858

RESUMO

Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified. Furthermore, using our 'HPV16-specific Region Capture Hi-C' technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a 'cancer-causing gene' is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.


Assuntos
Carcinogênese/patologia , Cromatina/metabolismo , Genoma Viral , Papillomavirus Humano 16/isolamento & purificação , Infecções por Papillomavirus/complicações , Neoplasias do Colo do Útero/patologia , Integração Viral , Carcinogênese/metabolismo , Cromatina/genética , Epigênese Genética , Feminino , Humanos , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
6.
Nature ; 548(7667): 347-351, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792939

RESUMO

A fundamental principle in biology is that the program for early development is established during oogenesis in the form of the maternal transcriptome. How the maternal transcriptome acquires the appropriate content and dosage of transcripts is not fully understood. Here we show that 3' terminal uridylation of mRNA mediated by TUT4 and TUT7 sculpts the mouse maternal transcriptome by eliminating transcripts during oocyte growth. Uridylation mediated by TUT4 and TUT7 is essential for both oocyte maturation and fertility. In comparison to somatic cells, the oocyte transcriptome has a shorter poly(A) tail and a higher relative proportion of terminal oligo-uridylation. Deletion of TUT4 and TUT7 leads to the accumulation of a cohort of transcripts with a high frequency of very short poly(A) tails, and a loss of 3' oligo-uridylation. By contrast, deficiency of TUT4 and TUT7 does not alter gene expression in a variety of somatic cells. In summary, we show that poly(A) tail length and 3' terminal uridylation have essential and specific functions in shaping a functional maternal transcriptome.


Assuntos
Herança Materna/genética , Oócitos/metabolismo , Poli A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Uridina Monofosfato/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Infertilidade Feminina/genética , Masculino , Camundongos , Camundongos Knockout , Mães , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Oócitos/crescimento & desenvolvimento , Especificidade de Órgãos , Poli A/química , Estabilidade de RNA
7.
Mol Cell ; 56(2): 193-204, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25242146

RESUMO

The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system.


Assuntos
Interferon gama/metabolismo , Células-Tronco Neurais/citologia , Receptores de Interferon/metabolismo , Vesículas Transportadoras/metabolismo , Células 3T3 , Animais , Transporte Biológico , Comunicação Celular , Microambiente Celular , Inflamação/imunologia , Interferon gama/biossíntese , Interferon gama/genética , Camundongos , Células-Tronco Neurais/transplante , RNA Mensageiro , Receptores de Interferon/genética , Fator de Transcrição STAT1/biossíntese , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Células Th1/metabolismo , Células Th2/metabolismo , Receptor de Interferon gama
8.
Mol Cell ; 50(4): 601-8, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706823

RESUMO

Transposons present an acute challenge to the germline, and mechanisms that repress their activity are essential for transgenerational genomic integrity. LINE1 (L1) is the most successful retrotransposon and is epigenetically repressed by CpG DNA methylation. Here, we identify two additional important mechanisms by which L1 is repressed during spermatogenesis. We demonstrate that the Piwi protein Mili and the piRNA pathway are required to posttranscriptionally silence L1 in meiotic pachytene cells even in the presence of normal L1 DNA methylation. Strikingly, in the absence of both a functional piRNA pathway and DNA methylation, L1 elements are normally repressed in mitotic stages of spermatogenesis. Accordingly, we find that the euchromatic repressive histone H3 dimethylated lysine 9 modification cosuppresses L1 expression therein. We demonstrate the existence of multiple epigenetic mechanisms that in conjunction with the piRNA pathway sequentially enforce L1 silencing and genomic stability during mitotic and meiotic stages of adult spermatogenesis.


Assuntos
Epigênese Genética , Inativação Gênica , Elementos Nucleotídeos Longos e Dispersos/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Espermatogênese/genética , Fatores Etários , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Western Blotting , Metilação de DNA , Expressão Gênica , Histonas/metabolismo , Lisina/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Mitose/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatócitos/metabolismo , Testículo/citologia , Testículo/metabolismo
9.
Nucleic Acids Res ; 47(14): 7262-7275, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31305886

RESUMO

RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity.


Assuntos
Processamento Alternativo , Gráficos por Computador , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Genoma Humano/genética , Humanos , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Isoformas de RNA/química , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo
10.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233721

RESUMO

Follicular lymphoma (FL) is a common indolent B-cell lymphoma that can transform into the more aggressive transformed FL (tFL). However, the molecular process driving this transformation is uncertain. In this work, we aimed to identify microRNA (miRNA)-binding sites recurrently mutated in follicular lymphoma patients, as well as in transformed FL patients. Using whole-genome sequencing data from FL tumors, we discovered 544 mutations located in bioinformatically predicted microRNA-binding sites. We then studied these specific regions using targeted sequencing in a cohort of 55 FL patients, found 16 recurrent mutations, and identified a further 69 variants. After filtering for QC, we identified 21 genes with mutated miRNA-binding sites that were also enriched for B-cell-associated genes by Gene Ontology. Over 40% of mutations identified in these genes were present exclusively in tFL patients. We validated the predicted miRNA-binding sites of five of the genes by luciferase assay and demonstrated that the identified mutations in BCL2 and EZH2 genes impaired the binding efficiency of miR-5008 and miR-144 and regulated the endogenous levels of messenger RNA (mRNA).


Assuntos
Sítios de Ligação , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Linfoma Folicular/genética , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Linhagem Celular Tumoral , Estudos de Coortes , Humanos , Londres , Mutação , Estudos Retrospectivos , Espanha
11.
Genome Res ; 26(5): 705-16, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27197243

RESUMO

Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Transcriptoma , Animais , Camundongos
12.
RNA ; 23(6): 882-891, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28351886

RESUMO

Activation of T lymphocytes requires a tight regulation of microRNA (miRNA) expression. Terminal uridyltransferases (TUTases) catalyze 3' nontemplated nucleotide addition (3'NTA) to miRNAs, which may influence miRNA stability and function. Here, we investigated 3'NTA to mature miRNA in CD4 T lymphocytes by deep sequencing. Upon T-cell activation, miRNA sequences bearing terminal uridines are specifically decreased, concomitantly with down-regulation of TUT4 and TUT7 enzymes. Analyzing TUT4-deficient T lymphocytes, we proved that this terminal uridyltransferase is essential for the maintenance of miRNA uridylation in the steady state of T lymphocytes. Analysis of synthetic uridylated miRNAs shows that 3' addition of uridine promotes degradation of these uridylated miRNAs after T-cell activation. Our data underline post-transcriptional uridylation as a mechanism to fine-tune miRNA levels during T-cell activation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ativação Linfocitária/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Uridina/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , MicroRNAs/química , Modelos Biológicos , Estabilidade de RNA , Uridina/química
13.
Nat Chem Biol ; 13(9): 951-955, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671681

RESUMO

Extracellular vesicles (EVs) are membrane particles involved in the exchange of a broad range of bioactive molecules between cells and the microenvironment. Although it has been shown that cells can traffic metabolic enzymes via EVs, much remains to be elucidated with regard to their intrinsic metabolic activity. Accordingly, herein we assessed the ability of neural stem/progenitor cell (NSC)-derived EVs to consume and produce metabolites. Our metabolomics and functional analyses both revealed that EVs harbor L-asparaginase activity, catalyzed by the enzyme asparaginase-like protein 1 (Asrgl1). Critically, we show that Asrgl1 activity is selective for asparagine and is devoid of glutaminase activity. We found that mouse and human NSC EVs traffic Asrgl1. Our results demonstrate, for the first time, that NSC EVs function as independent metabolic units that are able to modify the concentrations of critical nutrients, with the potential to affect the physiology of their microenvironment.


Assuntos
Asparaginase/metabolismo , Vesículas Extracelulares/metabolismo , Modelos Biológicos
14.
PLoS Biol ; 14(3): e1002364, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26938778

RESUMO

In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Interferons/fisiologia , MicroRNAs/metabolismo , Esteróis/biossíntese , Viroses/imunologia , Animais , Camundongos Endogâmicos C57BL
15.
EMBO Rep ; 18(7): 1231-1247, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28500258

RESUMO

Spermatogenesis is associated with major and unique changes to chromosomes and chromatin. Here, we sought to understand the impact of these changes on spermatogenic transcriptomes. We show that long terminal repeats (LTRs) of specific mouse endogenous retroviruses (ERVs) drive the expression of many long non-coding transcripts (lncRNA). This process occurs post-mitotically predominantly in spermatocytes and round spermatids. We demonstrate that this transposon-driven lncRNA expression is a conserved feature of vertebrate spermatogenesis. We propose that transposon promoters are a mechanism by which the genome can explore novel transcriptional substrates, increasing evolutionary plasticity and allowing for the genesis of novel coding and non-coding genes. Accordingly, we show that a small fraction of these novel ERV-driven transcripts encode short open reading frames that produce detectable peptides. Finally, we find that distinct ERV elements from the same subfamilies act as differentially activated promoters in a tissue-specific context. In summary, we demonstrate that LTRs can act as tissue-specific promoters and contribute to post-mitotic spermatogenic transcriptome diversity.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Espermatogênese , Transcrição Gênica , Animais , Retrovirus Endógenos/genética , Genômica , Masculino , Camundongos , Fases de Leitura Aberta , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Espermatócitos/fisiologia , Sequências Repetidas Terminais , Transcriptoma
16.
Nucleic Acids Res ; 45(3): 1079-1090, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180281

RESUMO

MicroRNAs are important genetic regulators in both animals and plants. They have a range of functions spanning development, differentiation, growth, metabolism and disease. The advent of next-generation sequencing technologies has made it a relatively straightforward task to detect these molecules and their relative expression via sequencing. There are a large number of published studies with deposited datasets. However, there are currently few resources that capitalize on these data to better understand the features, distribution and biogenesis of miRNAs. Herein, we focus on Human and Mouse for which the majority of data are available. We reanalyse sequencing data from 461 samples into a coordinated catalog of microRNA expression. We use this to perform large-scale analyses of miRNA function and biogenesis. These analyses include global expression comparison, co-expression of miRNA clusters and the prediction of miRNA strand-specificity and underlying constraints. Additionally, we report for the first time a global analysis of miRNA epi-transcriptomic modifications and assess their prevalence across tissues, samples and families. Finally, we report a list of potentially mis-annotated miRNAs in miRBase based on their aggregated modification profiles. The results have been collated into a comprehensive online repository of miRNA expression and features such as modifications and RNA editing events, which is available at: http://wwwdev.ebi.ac.uk/enright-dev/miratlas. We believe these findings will further contribute to our understanding of miRNA function in animals and benefit the miRNA community in general.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Bases de Dados de Ácidos Nucleicos , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Anotação de Sequência Molecular , Família Multigênica , Processamento Pós-Transcricional do RNA , Análise de Sequência de RNA , Transcriptoma
17.
Nucleic Acids Res ; 45(21): e177, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036314

RESUMO

The discovery of microRNAs (miRNAs) remains an important problem, particularly given the growth of high-throughput sequencing, cell sorting and single cell biology. While a large number of miRNAs have already been annotated, there may well be large numbers of miRNAs that are expressed in very particular cell types and remain elusive. Sequencing allows us to quickly and accurately identify the expression of known miRNAs from small RNA-Seq data. The biogenesis of miRNAs leads to very specific characteristics observed in their sequences. In brief, miRNAs usually have a well-defined 5' end and a more flexible 3' end with the possibility of 3' tailing events, such as uridylation. Previous approaches to the prediction of novel miRNAs usually involve the analysis of structural features of miRNA precursor hairpin sequences obtained from genome sequence. We surmised that it may be possible to identify miRNAs by using these biogenesis features observed directly from sequenced reads, solely or in addition to structural analysis from genome data. To this end, we have developed mirnovo, a machine learning based algorithm, which is able to identify known and novel miRNAs in animals and plants directly from small RNA-Seq data, with or without a reference genome. This method performs comparably to existing tools, however is simpler to use with reduced run time. Its performance and accuracy has been tested on multiple datasets, including species with poorly assembled genomes, RNaseIII (Drosha and/or Dicer) deficient samples and single cells (at both embryonic and adult stage).


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Aprendizado de Máquina , MicroRNAs/química , Análise de Sequência de RNA/métodos , Software , Algoritmos , Animais , Perfilação da Expressão Gênica , Genômica , Humanos , Camundongos , MicroRNAs/metabolismo , RNA de Plantas/química , Pequeno RNA não Traduzido/química , Ribonuclease III/genética , Análise de Célula Única
19.
Nat Methods ; 12(4): 339-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751143

RESUMO

We compared quantitative RT-PCR (qRT-PCR), RNA-seq and capture sequencing (CaptureSeq) in terms of their ability to assemble and quantify long noncoding RNAs and novel coding exons across 20 human tissues. CaptureSeq was superior for the detection and quantification of genes with low expression, showed little technical variation and accurately measured differential expression. This approach expands and refines previous annotations and simultaneously generates an expression atlas.


Assuntos
Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , RNA/genética , Análise de Sequência/métodos , Humanos , Células K562 , Reação em Cadeia da Polimerase , RNA/sangue , RNA/química
20.
Nucleic Acids Res ; 44(W1): W176-80, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27198221

RESUMO

Non-coding RNA transcripts such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are important genetic regulators. However, the functions of many of these transcripts are still not clearly understood. Recently, it has become apparent that there is significant crosstalk between miRNAs and lncRNAs and that this creates competition for binding between the miRNA, a lncRNA and other regulatory targets. Indeed, various competitive endogenous RNAs (ceRNAs) have already been identified where a lncRNA acts by sequestering miRNAs. This implies the down-regulation in the interaction of the miRNAs with their mRNA targets, what has been called a sponge effect. Multiple approaches exist for the prediction of miRNA targets in mRNAs. However, few methods exist for the prediction of miRNA response elements (MREs) in lncRNAs acting as ceRNAs (sponges). Here, we present spongeScan (http://spongescan.rc.ufl.edu), a graphical web tool to compute and visualize putative MREs in lncRNAs, along with different measures to assess their likely behavior as ceRNAs.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Software , Ligação Competitiva , Gráficos por Computador , Regulação para Baixo , Humanos , Internet , MicroRNAs/genética , Motivos de Nucleotídeos , Especificidade de Órgãos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Elementos de Resposta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA