Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(11): 4539-4545, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34006114

RESUMO

We present a plasmonic platform featuring efficient, broadband metallic fiber-to-chip couplers that directly interface plasmonic slot waveguides, such as compact and high-speed electro-optic modulators. The metallic gratings exhibit an experimental fiber-to-slot coupling efficiency of -2.7 dB with -1.4 dB in simulations with the same coupling principle. Further, they offer a huge spectral window with a 3 dB passband of 350 nm. The technology relies on a vertically arranged layer stack, metal-insulator-metal waveguides, and fiber-to-slot couplers and is formed in only one lithography step with a minimum feature size of 250 nm. As an application example, we fabricate new modulator devices with an electro-optic organic material in the slot waveguide and reach 50 and 100 Gbit/s data modulation in the O- and C-bands within the same device. The devices' broad spectral bandwidth and their relaxed fabrication may render them suitable for experiments and applications in the scope of sensing, nonlinear optics, or telecommunications.

2.
Opt Express ; 28(20): 29318-29334, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114834

RESUMO

A deep learning (DL) based digital backpropagation (DBP) method with a 1 dB SNR gain over a conventional 1 step per span DBP is demonstrated in a 32 GBd 16QAM transmission across 1200 km. The new DL-DPB is shown to require 6 times less computational power over the conventional DBP scheme. The achievement is possible due to a novel training method in which the DL-DBP is blind to timing error, state of polarization rotation, frequency offset and phase offset. An analysis of the underlying mechanism is given. The applied method first undoes the dispersion, compensates for nonlinear effects in a distributed fashion and reduces the out of band nonlinear modulation due to compensation of the nonlinearities by having a low pass characteristic. We also show that it is sufficient to update the elements of the DL network using a signal with high nonlinearity when dispersion or nonlinearity conditions changes. Lastly, simulation results indicate that the proposed scheme is suitable to deal with impairments from transmission over longer distances.

3.
Opt Express ; 24(22): 25629-25640, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828498

RESUMO

A blind frequency and phase search algorithm for joint frequency and phase recovery is introduced. The algorithm achieves low complexity due to processing in polar coordinates, which reduces the amount of multiplications. We show an implementation for real-time processing at 32 GBd on FPGA hardware. The hardware design allows for dynamic multi-format operation, where the format can be switched flexibly after each clock cycle (250 MHz, 128 Symbols) between 4QAM, 8QAM, and 16QAM. The performance of the algorithm is evaluated with respect to laser phase noise, carrier frequency offset, and carrier frequency offset drift. The effect of working with limited hardware resources is investigated. An FPGA implementation shows the feasibility of our carrier recovery algorithm with a negligible penalty when compared to a floating point simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA