Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Am J Respir Crit Care Med ; 209(11): 1360-1375, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271553

RESUMO

Rationale: Chronic lung allograft dysfunction (CLAD) is the leading cause of death after lung transplant, and azithromycin has variable efficacy in CLAD. The lung microbiome is a risk factor for developing CLAD, but the relationship between lung dysbiosis, pulmonary inflammation, and allograft dysfunction remains poorly understood. Whether lung microbiota predict outcomes or modify treatment response after CLAD is unknown. Objectives: To determine whether lung microbiota predict post-CLAD outcomes and clinical response to azithromycin. Methods: Retrospective cohort study using acellular BAL fluid prospectively collected from recipients of lung transplant within 90 days of CLAD onset. Lung microbiota were characterized using 16S rRNA gene sequencing and droplet digital PCR. In two additional cohorts, causal relationships of dysbiosis and inflammation were evaluated by comparing lung microbiota with CLAD-associated cytokines and measuring ex vivo P. aeruginosa growth in sterilized BAL fluid. Measurements and Main Results: Patients with higher bacterial burden had shorter post-CLAD survival, independent of CLAD phenotype, azithromycin treatment, and relevant covariates. Azithromycin treatment improved survival in patients with high bacterial burden but had negligible impact on patients with low or moderate burden. Lung bacterial burden was positively associated with CLAD-associated cytokines, and ex vivo growth of P. aeruginosa was augmented in BAL fluid from transplant recipients with CLAD. Conclusions: In recipients of lung transplants with chronic rejection, increased lung bacterial burden is an independent risk factor for mortality and predicts clinical response to azithromycin. Lung bacterial dysbiosis is associated with alveolar inflammation and may be promoted by underlying lung allograft dysfunction.


Assuntos
Azitromicina , Rejeição de Enxerto , Transplante de Pulmão , Microbiota , Humanos , Azitromicina/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Rejeição de Enxerto/microbiologia , Rejeição de Enxerto/prevenção & controle , Estudos Retrospectivos , Adulto , Microbiota/efeitos dos fármacos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Pulmão/microbiologia , Doença Crônica , Transplantados/estatística & dados numéricos , Idoso , Disbiose , Estudos de Coortes , Líquido da Lavagem Broncoalveolar/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38261629

RESUMO

RATIONALE: The airway microbiome has the potential to shape COPD pathogenesis, but its relationship to outcomes in milder disease is unestablished. OBJECTIVES: Identify sputum microbiome characteristics associated with markers of COPD in participants of the SubPopulations and InteRmediate Outcome Measures of COPD Study (SPIROMICS). METHODS: Sputum DNA from 877 participants were analyzed using 16S rRNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic and muco-inflammatory markers, including longitudinal lung function trajectory, were examined. MEASUREMENTS AND MAIN RESULTS: Participant data represented predominantly milder disease (GOLD 0-2: N=732/877). Phylogenetic diversity (range of different species within a sample) correlated positively with baseline lung function, declined with higher GOLD stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (p<0.001). In co-variate adjusted regression models, organisms robustly associated with better lung function included members of Alloprevotella, Oribacterium, and Veillonella. Conversely, lower lung function, greater symptoms and radiographic measures of small airway disease associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features also associated with lung function trajectory during SPIROMICS follow up (stable/improved, decliner, or rapid decliner). The 'stable/improved' group (slope of FEV1 regression ≥ 66th percentile) had higher bacterial diversity at baseline, associated with enrichment in Prevotella, Leptotrichia, and Neisseria. In contrast, the 'rapid decliner' group (FEV1 slope ≤ 33rd percentile) had significantly lower baseline diversity, associated with enrichment in Streptococcus. CONCLUSIONS: In SPIROMICS baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.

3.
Bioinformatics ; 38(15): 3830-3832, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35695743

RESUMO

SUMMARY: Here, we introduce SNIKT, a command-line tool for sequence-independent visual confirmation and input-assisted removal of adapter contamination in whole-genome shotgun or metagenomic shotgun long-read sequencing DNA or RNA data. AVAILABILITY AND IMPLEMENTATION: SNIKT is implemented in R and is compatible with Unix-like platforms. The source code, along with documentation, is freely available under an MIT license at https://github.com/piyuranjan/SNIKT. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenômica , Software , Análise de Sequência de DNA , Metagenoma
4.
Am J Respir Crit Care Med ; 206(4): 427-439, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35536732

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is variable in its development. Lung microbiota and metabolites collectively may impact COPD pathophysiology, but relationships to clinical outcomes in milder disease are unclear. Objectives: Identify components of the lung microbiome and metabolome collectively associated with clinical markers in milder stage COPD. Methods: We analyzed paired microbiome and metabolomic data previously characterized from bronchoalveolar lavage fluid in 137 participants in the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), or (GOLD [Global Initiative for Chronic Obstructive Lung Disease Stage 0-2). Datasets used included 1) bacterial 16S rRNA gene sequencing; 2) untargeted metabolomics of the hydrophobic fraction, largely comprising lipids; and 3) targeted metabolomics for a panel of hydrophilic compounds previously implicated in mucoinflammation. We applied an integrative approach to select features and model 14 individual clinical variables representative of known associations with COPD trajectory (lung function, symptoms, and exacerbations). Measurements and Main Results: The majority of clinical measures associated with the lung microbiome and metabolome collectively in overall models (classification accuracies, >50%, P < 0.05 vs. chance). Lower lung function, COPD diagnosis, and greater symptoms associated positively with Streptococcus, Neisseria, and Veillonella, together with compounds from several classes (glycosphingolipids, glycerophospholipids, polyamines and xanthine, an adenosine metabolite). In contrast, several Prevotella members, together with adenosine, 5'-methylthioadenosine, sialic acid, tyrosine, and glutathione, associated with better lung function, absence of COPD, or less symptoms. Significant correlations were observed between specific metabolites and bacteria (Padj < 0.05). Conclusions: Components of the lung microbiome and metabolome in combination relate to outcome measures in milder COPD, highlighting their potential collaborative roles in disease pathogenesis.


Assuntos
Microbiota , Doença Pulmonar Obstrutiva Crônica , Adenosina , Humanos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , RNA Ribossômico 16S/genética
5.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L404-L415, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34159791

RESUMO

Recent studies have implicated lung microbiota in shaping local alveolar immune responses. Toll-like receptors are major sensors of microbiota and determinants of local epithelial homeostasis. The impact of toll-like receptor deficiency on lung microbiota is unknown. To determine whether the absence of toll-like receptors results in altered lung microbiota or dysbiosis, we compared lung microbiota in wild-type and toll-like receptor-deficient experimental mice using 16S ribosomal RNA gene quantification and sequencing. We used a randomized environmental caging strategy to determine the impact of toll-like receptors on lung microbiota. Lung microbiota are detectable in toll-like receptor-deficient experimental mice and exhibit considerable variability. The lung microbiota of toll-like receptor-deficient mice are altered in community composition (PERMANOVA P < 0.001), display reduced diversity (t test P = 0.0075), and bacterial burden (t test P = 0.016) compared with wild-type mice with intact toll-like receptors and associated signaling pathways. The lung microbiota of wild-type mice when randomized to cages with toll-like receptor-deficient mice converged with no significant difference in community composition (PERMANOVA P > 0.05) after 3 wk of cohousing. The lung microbiome of toll-like receptor-deficient mice is distinct from wild-type mice and may be less susceptible to the effects of caging as an environmental variable. Our observations support a role for toll-like receptor signaling in the shaping of lung microbiota.


Assuntos
Bactérias , Disbiose/microbiologia , Pulmão/microbiologia , Microbiota , Receptores Toll-Like/deficiência , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Disbiose/genética , Disbiose/patologia , Pulmão/patologia , Camundongos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Receptores Toll-Like/metabolismo
6.
Respir Res ; 22(1): 310, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893078

RESUMO

BACKGROUND: Aetiology detection is crucial in the diagnosis and treatment of ventilator-associated pneumonia (VAP). However, the detection method needs improvement. In this study, we used Nanopore sequencing to build a quick detection protocol and compared the efficiency of different methods for detecting 7 VAP pathogens. METHODS: The endotracheal aspirate (ETA) of 83 patients with suspected VAP from Peking University Third Hospital (PUTH) was collected, saponins were used to deplete host genomes, and PCR- or non-PCR-amplified library construction methods were used and compared. Sequence was performed with MinION equipment and local data analysis methods were used for sequencing and data analysis. RESULTS: Saponin depletion effectively removed 11 of 12 human genomes, while most pathogenic bacterial genome results showed no significant difference except for S. pneumoniae. Moreover, the average sequence time decreased from 19.6 h to 3.62 h. The non-PCR amplification method and PCR amplification method for library build has a similar average sensitivity (85.8% vs. 86.35%), but the non-PCR amplification method has a better average specificity (100% VS 91.15%), and required less time. The whole method takes 5-6 h from ETA extraction to pathogen classification. After analysing the 7 pathogens enrolled in our study, the average sensitivity of metagenomic sequencing was approximately 2.4 times higher than that of clinical culture (89.15% vs. 37.77%), and the average specificity was 98.8%. CONCLUSIONS: Using saponins to remove the human genome and a non-PCR amplification method to build libraries can be used for the identification of pathogens in the ETA of VAP patients within 6 h by MinION, which provides a new approach for the rapid identification of pathogens in clinical departments.


Assuntos
Líquido da Lavagem Broncoalveolar/microbiologia , DNA Bacteriano/análise , Metagenômica/métodos , Pneumonia Pneumocócica/diagnóstico , Pneumonia Associada à Ventilação Mecânica/diagnóstico , Streptococcus pneumoniae/genética , Feminino , Seguimentos , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Pneumonia Pneumocócica/microbiologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Estudos Retrospectivos
7.
Am J Respir Crit Care Med ; 199(9): 1127-1138, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30789747

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) causes considerable global morbidity and mortality, and its mechanisms of disease progression are poorly understood. Recent observational studies have reported associations between lung dysbiosis, mortality, and altered host defense gene expression, supporting a role for lung microbiota in IPF. However, the causal significance of altered lung microbiota in disease progression is undetermined. Objectives: To examine the effect of microbiota on local alveolar inflammation and disease progression using both animal models and human subjects with IPF. Methods: For human studies, we characterized lung microbiota in BAL fluid from 68 patients with IPF. For animal modeling, we used a murine model of pulmonary fibrosis in conventional and germ-free mice. Lung bacteria were characterized using 16S rRNA gene sequencing with novel techniques optimized for low-biomass sample load. Microbiota were correlated with alveolar inflammation, measures of pulmonary fibrosis, and disease progression. Measurements and Main Results: Disruption of the lung microbiome predicts disease progression, correlates with local host inflammation, and participates in disease progression. In patients with IPF, lung bacterial burden predicts fibrosis progression, and microbiota diversity and composition correlate with increased alveolar profibrotic cytokines. In murine models of fibrosis, lung dysbiosis precedes peak lung injury and is persistent. In germ-free animals, the absence of a microbiome protects against mortality. Conclusions: Our results demonstrate that lung microbiota contribute to the progression of IPF. We provide biological plausibility for the hypothesis that lung dysbiosis promotes alveolar inflammation and aberrant repair. Manipulation of lung microbiota may represent a novel target for the treatment of IPF.


Assuntos
Fibrose Pulmonar Idiopática/microbiologia , Inflamação/microbiologia , Pulmão/microbiologia , Microbiota/fisiologia , Idoso , Animais , Líquido da Lavagem Broncoalveolar/microbiologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Citometria de Fluxo , Vida Livre de Germes , Humanos , Fibrose Pulmonar Idiopática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/genética , Pessoa de Meia-Idade , Alvéolos Pulmonares/microbiologia , Alvéolos Pulmonares/patologia , RNA Ribossômico 16S/genética
8.
Annu Rev Physiol ; 78: 481-504, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26527186

RESUMO

Although the notion that "the normal lung is free from bacteria" remains common in textbooks, it is virtually always stated without citation or argument. The lungs are constantly exposed to diverse communities of microbes from the oropharynx and other sources, and over the past decade, novel culture-independent techniques of microbial identification have revealed that the lungs, previously considered sterile in health, harbor diverse communities of microbes. In this review, we describe the topography and population dynamics of the respiratory tract, both in health and as altered by acute and chronic lung disease. We provide a survey of current techniques of sampling, sequencing, and analysis of respiratory microbiota and review technical challenges and controversies in the field. We review and synthesize what is known about lung microbiota in various diseases and identify key lessons learned across disease states.


Assuntos
Pneumopatias/microbiologia , Microbiota/fisiologia , Sistema Respiratório/microbiologia , Animais , Humanos
9.
Am J Respir Crit Care Med ; 198(4): 497-508, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29533677

RESUMO

RATIONALE: The "gut-lung axis" is commonly invoked to explain the microbiome's influence on lung inflammation. Yet the lungs harbor their own microbiome, which is altered in respiratory disease. The relative influence of gut and lung bacteria on lung inflammation is unknown. OBJECTIVES: To determine whether baseline lung immune tone reflects local (lung-lung) or remote (gut-lung) microbe-host interactions. METHODS: We compared lung, tongue, and cecal bacteria in 40 healthy, genetically identical, 10-week-old mice, using 16S ribosomal RNA gene quantification and sequencing. We measured inflammatory cytokines, using a multiplex assay of homogenized lung tissue. We compared lung bacteria in healthy mice treated with varied durations of systemic antibiotics. MEASUREMENTS AND MAIN RESULTS: Lung bacterial communities are highly variable among mice, cluster strongly by cage, shipment, and vendor, and are altered by antibiotics in a microbiologically predictable manner. Baseline lung concentrations of two key inflammatory cytokines (IL-1α and IL-4) are correlated with the diversity and community composition of lung bacterial communities. Lung concentrations of these inflammatory cytokines correlate more strongly with variation in lung bacterial communities than with that of the gut or mouth. CONCLUSIONS: In the lungs of healthy mice, baseline innate immune tone more strongly reflects local (lung-lung) microbe-host interactions than remote (gut-lung) microbe-host interactions. Our results independently confirm the existence and immunologic significance of the murine lung microbiome, even in health. Variation in lung microbiota is likely an important, underappreciated source of experimental and clinical variability. The lung microbiome is an unexplored therapeutic target for the prevention and treatment of inflammatory lung disease.


Assuntos
Imunidade Inata/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Microbiota/fisiologia , Animais , Meio Ambiente , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
10.
Am J Respir Crit Care Med ; 197(6): 747-756, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29232157

RESUMO

RATIONALE: Sepsis causes brain dysfunction and neuroinflammation. It is unknown whether neuroinflammation in sepsis is initiated by dissemination of bacteria to the brain and sustained by persistent infection, or whether neuroinflammation is a sterile process resulting solely from circulating inflammatory mediators. OBJECTIVES: To determine if gut bacteria translocate to the brain during sepsis, and are associated with neuroinflammation. METHODS: Murine sepsis was induced using cecal ligation and puncture, and sepsis survivor mice were compared with sham and unoperated control animals. Brain tissue of patients who died of sepsis was compared with patients who died of noninfectious causes. Bacterial taxa were characterized by 16S ribosomal RNA gene sequencing in both murine and human brain specimens; compared among sepsis and nonsepsis groups; and correlated with levels of S100A8, a marker of neuroinflammation using permutational multivariate ANOVA. MEASUREMENTS AND MAIN RESULTS: Viable gut-associated bacteria were enriched in the brains of mice 5 days after surviving abdominal sepsis (P < 0.01), and undetectable by 14 days. The community structure of brain-associated bacteria correlated with severity of neuroinflammation (P < 0.001). Furthermore, bacterial taxa detected in brains of humans who die of sepsis were distinct from those who died of noninfectious causes (P < 0.001) and correlated with S100A8/A9 expression (P < 0.05). CONCLUSIONS: Although bacterial translocation is associated with acute neuroinflammation in murine sepsis, bacterial translocation did not result in chronic cerebral infection. Postmortem analysis of patients who die of sepsis suggests a role for bacteria in acute brain dysfunction in sepsis. Further work is needed to determine if modifying gut-associated bacterial communities modulates brain dysfunction after sepsis.


Assuntos
Translocação Bacteriana/fisiologia , Encéfalo/microbiologia , Encefalite/etiologia , Microbioma Gastrointestinal/fisiologia , Sepse/complicações , Animais , Cadáver , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença
11.
Am J Respir Crit Care Med ; 198(10): 1312-1321, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29878854

RESUMO

RATIONALE: Hematopoietic cell transplant (HCT) is a common treatment for hematological neoplasms and autoimmune disorders. Among HCT recipients, pulmonary complications are common, morbid, and/or lethal, and they have recently been associated with gut dysbiosis. The role of lung microbiota in post-HCT pulmonary complications is unknown. OBJECTIVES: To investigate the role of lung microbiota in post-HCT pulmonary complications using animal modeling and human BAL fluid. METHODS: For animal modeling, we used an established murine model of HCT with and without postengraftment herpes virus infection. For human studies, we characterized lung microbiota in BAL fluid from 43 HCT recipients. Lung bacteria were characterized using 16S ribosomal RNA gene sequencing and were compared with lung histology (murine) and with alveolar inflammation and pulmonary function testing (human). MEASUREMENTS AND MAIN RESULTS: Both HCT and viral infection independently altered the composition of murine lung microbiota, but they had no effect on lung microbial diversity. By contrast, combined HCT and viral infection profoundly altered lung microbiota, decreasing community diversity with an associated pneumonitis. Among human HCT recipients, increased relative abundance of the Proteobacteria phylum was associated with impaired pulmonary function, and lung microbiota were significantly associated with alveolar concentrations of inflammatory cytokines. CONCLUSIONS: In animal models and human subjects, lung dysbiosis is a prominent feature of HCT. Lung dysbiosis is correlated with histologic, immunologic, and physiologic features of post-HCT pulmonary complications. Our findings suggest the lung microbiome may be an unappreciated target for the prevention and treatment of post-HCT pulmonary complications.


Assuntos
Disbiose/epidemiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Inflamação/epidemiologia , Pneumopatias/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Animais , Comorbidade , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Humanos , Inflamação/microbiologia , Pulmão/microbiologia , Pneumopatias/microbiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Complicações Pós-Operatórias/microbiologia
13.
Am J Respir Crit Care Med ; 196(2): 208-219, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28157391

RESUMO

RATIONALE: Differences in the lung microbial community influence idiopathic pulmonary fibrosis (IPF) progression. Whether the lung microbiome influences IPF host defense remains unknown. OBJECTIVES: To explore the host immune response and microbial interaction in IPF as they relate to progression-free survival (PFS), fibroblast function, and leukocyte phenotypes. METHODS: Paired microarray gene expression data derived from peripheral blood mononuclear cells as well as 16S ribosomal RNA sequencing data from bronchoalveolar lavage obtained as part of the COMET-IPF (Correlating Outcomes with Biochemical Markers to Estimate Time-Progression in Idiopathic Pulmonary Fibrosis) study were used to conduct association pathway analyses. The responsiveness of paired lung fibroblasts to Toll-like receptor 9 (TLR9) stimulation by CpG-oligodeoxynucleotide (CpG-ODN) was integrated into microbiome-gene expression association analyses for a subset of individuals. The relationship between associated pathways and circulating leukocyte phenotypes was explored by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Down-regulation of immune response pathways, including nucleotide-binding oligomerization domain (NOD)-, Toll-, and RIG1-like receptor pathways, was associated with worse PFS. Ten of the 11 PFS-associated pathways correlated with microbial diversity and individual genus, with species accumulation curve richness as a hub. Higher species accumulation curve richness was significantly associated with inhibition of NODs and TLRs, whereas increased abundance of Streptococcus correlated with increased NOD-like receptor signaling. In a network analysis, expression of up-regulated signaling pathways was strongly associated with decreased abundance of operational taxonomic unit 1341 (OTU1341; Prevotella) among individuals with fibroblasts responsive to CpG-ODN stimulation. The expression of TLR signaling pathways was also linked to CpG-ODN responsive fibroblasts, OTU1341 (Prevotella), and Shannon index of microbial diversity in a network analysis. Lymphocytes expressing C-X-C chemokine receptor 3 CD8 significantly correlated with OTU1348 (Staphylococcus). CONCLUSIONS: These findings suggest that host-microbiome interactions influence PFS and fibroblast responsiveness.


Assuntos
Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/microbiologia , Imunidade Inata/imunologia , Microbiota/imunologia , Lavagem Broncoalveolar , Intervalo Livre de Doença , Regulação para Baixo/imunologia , Feminino , Citometria de Fluxo , Expressão Gênica/imunologia , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade
16.
Am J Respir Crit Care Med ; 192(4): 438-45, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25945594

RESUMO

RATIONALE: The relatively sparse but diverse microbiome in human lungs may become less diverse in chronic obstructive pulmonary disease (COPD). This article examines the relationship of this microbiome to emphysematous tissue destruction, number of terminal bronchioles, infiltrating inflammatory cells, and host gene expression. METHODS: Culture-independent pyrosequencing microbiome analysis was used to examine the V3-V5 regions of bacterial 16S ribosomal DNA in 40 samples of lung from 5 patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 4) and 28 samples from 4 donors (controls). A second protocol based on the V1-V3 regions was used to verify the bacterial microbiome results. Within lung tissue samples the microbiome was compared with results of micro-computed tomography, infiltrating inflammatory cells measured by quantitative histology, and host gene expression. MEASUREMENTS AND MAIN RESULTS: Ten operational taxonomic units (OTUs) was found sufficient to discriminate between control and GOLD stage 4 lung tissue, which included known pathogens such as Haemophilus influenzae. We also observed a decline in microbial diversity that was associated with emphysematous destruction, remodeling of the bronchiolar and alveolar tissue, and the infiltration of the tissue by CD4(+) T cells. Specific OTUs were also associated with neutrophils, eosinophils, and B-cell infiltration (P < 0.05). The expression profiles of 859 genes and 235 genes were associated with either enrichment or reductions of Firmicutes and Proteobacteria, respectively, at a false discovery rate cutoff of less than 0.1. CONCLUSIONS: These results support the hypothesis that there is a host immune response to microorganisms within the lung microbiome that appears to contribute to the pathogenesis of COPD.


Assuntos
Microbiota , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Bronquíolos/patologia , Linfócitos T CD4-Positivos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infiltração de Neutrófilos , Doença Pulmonar Obstrutiva Crônica/imunologia
17.
BMC Genomics ; 16: 1032, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26644001

RESUMO

BACKGROUND: While the taxonomy and genomics of environmental strains from the P. fluorescens species-complex has been reported, little is known about P. fluorescens strains from clinical samples. In this report, we provide the first genomic analysis of P. fluorescens strains in which human vs. environmental isolates are compared. RESULTS: Seven P. fluorescens strains were isolated from respiratory samples from cystic fibrosis (CF) patients. The clinical strains could grow at a higher temperature (>34 °C) than has been reported for environmental strains. Draft genomes were generated for all of the clinical strains, and multi-locus sequence analysis placed them within subclade III of the P. fluorescens species-complex. All strains encoded type- II, -III, -IV, and -VI secretion systems, as well as the widespread colonization island (WCI). This is the first description of a WCI in P. fluorescens strains. All strains also encoded a complete I2/PfiT locus and showed evidence of horizontal gene transfer. The clinical strains were found to differ from the environmental strains in the number of genes involved in metal resistance, which may be a possible adaptation to chronic antibiotic exposure in the CF lung. CONCLUSIONS: This is the largest comparative genomics analysis of P. fluorescens subclade III strains to date and includes the first clinical isolates. At a global level, the clinical P. fluorescens subclade III strains were largely indistinguishable from environmental P. fluorescens subclade III strains, supporting the idea that identifying strains as 'environmental' vs 'clinical' is not a phenotypic trait. Rather, strains within P. fluorescens subclade III will colonize and persist in any niche that provides the requirements necessary for growth.


Assuntos
Genoma Bacteriano , Genômica , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas fluorescens/classificação , Pseudomonas fluorescens/genética , Sistemas de Secreção Bacterianos/genética , Composição de Bases , Fibrose Cística/complicações , Loci Gênicos , Genômica/métodos , Genótipo , Humanos , Metais/metabolismo , Família Multigênica , Fenótipo , Filogenia , Pseudomonas fluorescens/isolamento & purificação , Pseudomonas fluorescens/metabolismo , Metabolismo Secundário/genética , Análise de Sequência de DNA
18.
Immunology ; 144(4): 704-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25399934

RESUMO

The host response to Clostridium difficile infection in antibiotic-treated mice is characterized by robust recruitment of Gr-1(+) cells, increased expression of inflammatory cytokines including tumour necrosis factor-α (TNF-α), and the development of severe epithelial damage. To investigate the role of Gr-1(+) cells and TNF-α during C. difficile colitis, we treated infected mice with monoclonal antibodies against Gr-1 or TNF-α. Mice were challenged with vegetative cells of C. difficile strain VPI 10463 following treatment with the third-generation cephalosporin ceftriaxone. Ceftriaxone treatment alone was associated with significant changes in cytokine expression within the colonic mucosa but not overt inflammatory histopathological changes. In comparison, C. difficile infection following ceftriaxone treatment was associated with increased expression of inflammatory cytokines and chemokines including Cxcl1, Cxcl2, Il1b, Il17f and Tnfa, as well as robust recruitment of Ly6C(Mid)  Gr-1(High) neutrophils and Ly6C(High) Gr-1(Mid) monocytes and the development of severe colonic histopathology. Anti-Gr-1 antibody treatment resulted in effective depletion of both Ly6C(Mid) Gr-1(High) neutrophils and Ly6C(High) Gr-1(Mid) monocytes: however, we observed no protection from the development of severe pathology or reduction in expression of the pro-inflammatory cytokines Il1b, Il6, Il33 and Tnfa following anti-Gr-1 treatment. By contrast, anti-TNF-α treatment did not affect Gr-1(+) cell recruitment, but was associated with increased expression of Il6 and Il1b. Additionally, Ffar2, Ffar3, Tslp, Tff and Ang4 expression was significantly reduced in anti-TNF-α-treated animals, in association with marked intestinal histopathology. These studies raise the possibility that TNF-α may play a role in restraining inflammation and protecting the epithelium during C. difficile infection.


Assuntos
Clostridioides difficile/patogenicidade , Colo/metabolismo , Enterocolite Pseudomembranosa/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Ceftriaxona , Clostridioides difficile/imunologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Enterocolite Pseudomembranosa/genética , Enterocolite Pseudomembranosa/imunologia , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/patologia , Enterocolite Pseudomembranosa/prevenção & controle , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Microbiota , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/microbiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/imunologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia
19.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1047-55, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26432870

RESUMO

The disciplines of physiology and ecology are united by the shared centrality of the concept of homeostasis: the stability of a complex system via internal mechanisms of self-regulation, resilient to external perturbation. In the past decade, these fields of study have been bridged by the discovery of the lung microbiome. The respiratory tract, long considered sterile, is in fact a dynamic ecosystem of microbiota, intimately associated with the host inflammatory response, altered in disease states. If the microbiome is a "newly discovered organ," ecology is the language we use to explain how it establishes, maintains, and loses homeostasis. In this essay, we review recent insights into the feedback mechanisms by which the lung microbiome and the host response are regulated in health and dysregulated in acute and chronic lung disease. We propose three explanatory models supported by recent studies: the adapted island model of lung biogeography, nutritional homeostasis at the host-microbiome interface, and interkingdom signaling and the community stress response.


Assuntos
Homeostase , Pulmão/microbiologia , Microbiota , Animais , Humanos , Pulmão/fisiologia , Pneumopatias/imunologia , Pneumopatias/metabolismo , Pneumopatias/microbiologia , Interações Microbianas , Transdução de Sinais
20.
J Immunol ; 190(7): 3447-57, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23467934

RESUMO

The alveolar epithelium is characteristically abnormal in fibrotic lung disease, and we recently established a direct link between injury to the type II alveolar epithelial cell (AEC) and the accumulation of interstitial collagen. The mechanisms by which damage to the epithelium induces lung scarring remain poorly understood. It is particularly controversial whether an insult to the type II AEC initiates an inflammatory response that is required for the development of fibrosis. To explore whether local inflammation occurs following a targeted epithelial insult and contributes to lung fibrosis, we administered diphtheria toxin to transgenic mice with type II AEC-restricted expression of the diphtheria toxin receptor. We used immunophenotyping techniques and diphtheria toxin receptor-expressing, chemokine receptor-2-deficient (CCR2(-/-)) mice to determine the participation of lung leukocyte subsets in pulmonary fibrogenesis. Our results demonstrate that targeted type II AEC injury induces an inflammatory response that is enriched for CD11b(+) nonresident exudate macrophages (ExM) and their precursors, Ly-6C(high) monocytes. CCR2 deficiency abrogates the accumulation of both cell populations and protects mice from fibrosis, weight loss, and death. Further analyses revealed that the ExM are alternatively activated and that ExM and Ly-6C(high) monocytes express mRNA for IL-13, TGF-ß, and the collagen genes, COL1A1 and COLIIIA1. Furthermore, the accumulated ExM and Ly-6C(high) monocytes contain intracellular collagen, as detected by immunostaining. Together, these results implicate CCR2 and the accumulation of ExM and Ly-6C(high) monocytes as critical determinants of pulmonary fibrosis induced by selective type II AEC injury.


Assuntos
Exsudatos e Transudatos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/imunologia , Receptores CCR2/genética , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Animais , Antígenos Ly/imunologia , Colágeno/biossíntese , Citocinas/genética , Citocinas/imunologia , Exsudatos e Transudatos/citologia , Expressão Gênica , Marcação de Genes , Imunofenotipagem , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Monócitos/metabolismo , Fenótipo , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/patologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/mortalidade , Receptores CCR2/imunologia , Redução de Peso/genética , Redução de Peso/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA