Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1837(6): 811-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24513194

RESUMO

Chemiosmotic energy coupling through oxidative phosphorylation (OXPHOS) is crucial to life, requiring coordinated enzymes whose membrane organization and dynamics are poorly understood. We quantitatively explore localization, stoichiometry, and dynamics of key OXPHOS complexes, functionally fluorescent protein-tagged, in Escherichia coli using low-angle fluorescence and superresolution microscopy, applying single-molecule analysis and novel nanoscale co-localization measurements. Mobile 100-200nm membrane domains containing tens to hundreds of complexes are indicated. Central to our results is that domains of different functional OXPHOS complexes do not co-localize, but ubiquinone diffusion in the membrane is rapid and long-range, consistent with a mobile carrier shuttling electrons between islands of different complexes. Our results categorically demonstrate that electron transport and proton circuitry in this model bacterium are spatially delocalized over the cell membrane, in stark contrast to mitochondrial bioenergetic supercomplexes. Different organisms use radically different strategies for OXPHOS membrane organization, likely depending on the stability of their environment.


Assuntos
Transporte de Elétrons , Escherichia coli/metabolismo , Fosforilação Oxidativa , Escherichia coli/enzimologia , Ubiquinona/metabolismo
3.
Biochim Biophys Acta ; 1817(6): 863-71, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22063474

RESUMO

The proton-pumping NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. In Escherichia coli the complex is made up of 13 different subunits encoded by the so-called nuo-genes. Mutants, in which each of the nuo-genes was individually disrupted by the insertion of a resistance cartridge were unable to assemble a functional complex I. Each disruption resulted in the loss of complex I-mediated activity and the failure to extract a structurally intact complex. Thus, all nuo-genes are required either for the assembly or the stability of a functional E. coli complex I. The three subunits comprising the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of several nuo-mutants as one distinct band after BN-PAGE. It is discussed that the fully assembled NADH dehydrogenase fragment represents an assembly intermediate of the E. coli complex I. A partially assembled complex I bound to the membrane was detected in the nuoK and nuoL mutants, respectively. Overproduction of the ΔNuoL variant resulted in the accumulation of two populations of a partially assembled complex in the cytoplasmic membranes. Both populations are devoid of NuoL. One population is enzymatically active, while the other is not. The inactive population is missing cluster N2 and is tightly associated with the inducible lysine decarboxylase. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.


Assuntos
Complexo I de Transporte de Elétrons/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Carboxiliases/metabolismo , Carboxiliases/fisiologia , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Citoplasma/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Furanos/farmacologia , Deleção de Genes , Expressão Gênica , Proteínas Ferro-Enxofre/metabolismo , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
4.
Microbiologyopen ; 3(3): 316-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24729508

RESUMO

The Escherichia coli cytoplasmic membrane contains the enzyme complexes of oxidative phosphorylation (OXPHOS). Not much is known about their supramolecular organization and their dynamics within the membrane in this model organism. In mitochondria and other bacteria, it was demonstrated by nondenaturing electrophoretic methods and electron microscopy that the OXPHOS complexes are organized in so-called supercomplexes, stable assemblies with a defined number of the individual enzyme complexes. To investigate the organization of the E. coli enzyme complexes of aerobic OXPHOS in vivo, we established fluorescent protein fusions of the NADH:ubiquinone oxidoreductase, the succinate:ubiquinone oxidoreductase, the cytochrome bd-I, and the cytochrome bo3 terminal oxidases, and the FoF1 ATP-synthase. The fusions were integrated in the chromosome to prevent artifacts caused by protein overproduction. Biochemical analysis revealed that all modified complexes were fully assembled, active, and stable. The distribution of the OXPHOS complexes in living cells was determined using total internal reflection fluorescence microscopy. The dynamics within the membrane were detected by fluorescence recovery after photobleaching. All aerobic OXPHOS complexes showed an uneven distribution in large mobile patches within the E. coli cytoplasmic membrane. It is discussed whether the individual OXPHOS complexes are organized as clustered individual complexes, here called "segrazones."


Assuntos
Membrana Celular/enzimologia , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Fosforilação Oxidativa , Aerobiose , Fusão Gênica Artificial , Genes Reporter , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microscopia de Fluorescência
5.
FEBS Lett ; 586(6): 699-704, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22326235

RESUMO

The NADH:ubiquinone oxidoreductase couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. It contains a 110Å long helix running parallel to the membrane part of the complex. Deletion of the helix resulted in a reduced H(+)/e(-) stoichiometry indicating its direct involvement in proton translocation. Here, we show that the mutation of the conserved amino acid D563(L), which is part of the horizontal helix of the Escherichia coli complex I, leads to a reduced H(+)/e(-) stoichiometry. It is discussed that this residue is involved in transferring protons to the membranous proton translocation site.


Assuntos
Ácido Aspártico/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Animais , Transporte de Elétrons , Complexo I de Transporte de Elétrons/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NADH Desidrogenase/genética , Prótons , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA