RESUMO
Since the discovery of this cell population by His in 1850, the neural crest has been under intense study for its important role during vertebrate development. Much has been learned about the function and regulation of neural crest cell differentiation, and as a result, the neural crest has become a key model system for stem cell biology in general. The experiments performed in embryology, genetics, and cell biology in the last 150 years in the neural crest field has given rise to several big questions that have been debated intensely for many years: "How does positional information impact developmental potential? Are neural crest cells individually multipotent or a mixed population of committed progenitors? What are the key factors that regulate the acquisition of stem cell identity, and how does a stem cell decide to differentiate towards one cell fate versus another?" Recently, a marriage between single cell multi-omics, statistical modeling, and developmental biology has shed a substantial amount of light on these questions, and has paved a clear path for future researchers in the field.
Assuntos
Crista Neural , Células-Tronco , Animais , Diferenciação Celular/genética , VertebradosRESUMO
The sympathetic nervous system controls bodily functions including vascular tone, cardiac rhythm, and the "fight-or-flight response". Sympathetic chain ganglia develop in parallel with preganglionic motor nerves extending from the neural tube, raising the question of whether axon targeting contributes to sympathetic chain formation. Using nerve-selective genetic ablations and lineage tracing in mouse, we reveal that motor nerve-associated Schwann cell precursors (SCPs) contribute sympathetic neurons and satellite glia after the initial seeding of sympathetic ganglia by neural crest. Motor nerve ablation causes mispositioning of SCP-derived sympathoblasts as well as sympathetic chain hypoplasia and fragmentation. Sympathetic neurons in motor-ablated embryos project precociously and abnormally towards dorsal root ganglia, eventually resulting in fusion of sympathetic and sensory ganglia. Cell interaction analysis identifies semaphorins as potential motor nerve-derived signaling molecules regulating sympathoblast positioning and outgrowth. Overall, central innervation functions both as infrastructure and regulatory niche to ensure the integrity of peripheral ganglia morphogenesis.
Assuntos
Gânglios Simpáticos , Neurônios Motores , Crista Neural , Células de Schwann , Sistema Nervoso Simpático , Animais , Sistema Nervoso Simpático/embriologia , Camundongos , Neurônios Motores/fisiologia , Células de Schwann/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Gânglios Simpáticos/citologia , Gânglios Espinais , Semaforinas/metabolismo , Semaforinas/genética , Camundongos Transgênicos , Neuroglia/metabolismo , FemininoRESUMO
Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.
Assuntos
Músculo Esquelético , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Músculo Esquelético/fisiologia , Miofibrilas/fisiologia , Morfogênese , Mioblastos/fisiologiaRESUMO
Defining the final size and geometry of engineered tissues through precise control of the scalar and vector components of tissue growth is a necessary benchmark for regenerative medicine, but it has proved to be a significant challenge for tissue engineers. The growth plate cartilage that promotes elongation of the long bones is a good model system for studying morphogenetic mechanisms because cartilage is composed of a single cell type, the chondrocyte; chondrocytes are readily maintained in culture; and growth trajectory is predominately in a single vector. In this cartilage, growth is generated via a differentiation program that is spatially and temporally regulated by an interconnected network composed of long- and short-range signaling mechanisms that together result in the formation of functionally distinct cellular zones. To facilitate investigation of the mechanisms underlying anisotropic growth, we developed an in vitro model of the growth plate cartilage by using neonatal mouse growth plate chondrocytes encapsulated in alginate hydrogel beads. In bead cultures, encapsulated chondrocytes showed high viability, cartilage matrix deposition, low levels of chondrocyte hypertrophy, and a progressive increase in cell proliferation over 7 days in culture. Exogenous factors were used to test functionality of the parathyroid-related protein-Indian hedgehog (PTHrP-IHH) signaling interaction, which is a crucial feedback loop for regulation of growth. Consistent with in vivo observations, exogenous PTHrP stimulated cell proliferation and inhibited hypertrophy, whereas IHH signaling stimulated chondrocyte hypertrophy. Importantly, the treatment of alginate bead cultures with IHH or thyroxine resulted in formation of a discrete domain of hypertrophic cells that mimics tissue architecture of native growth plate cartilage. Together, these studies are the first demonstration of a tunable in vitro system to model the signaling network interactions that are required to induce zonal architecture in growth plate chondrocytes, which could also potentially be used to grow cartilage cultures of specific geometries to meet personalized patient needs.