Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Anal Bioanal Chem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744719

RESUMO

Reproductive management significantly impacts dairy farm productivity, necessitating accurate timely pregnancy detection in cattle. This paper presents a novel handheld and portable fluorescence imaging system designed for quantitative assessment of pregnancy-specific biomarkers, addressing the limitations of current detection methods. The objective was to develop a cost-effective, at-farm solution for detecting pregnancy-specific protein B (PSPB) in bovine plasma samples. The system integrates an imaging module and a custom software application, enabling image capture, data processing, and PSPB concentration determination. Calibration utilizing known PSPB concentrations achieved a 0.6 ng/mL limit of detection. Validation encompassed a comparison with a standard ELISA method using 100 bovine plasma samples; minimal bias and good agreement were observed within the linear range of the calibration curve for both methods. The system offers portability, user-friendliness, and potential for multiplex detection, promising real-time, at-farm reproductive management. This study demonstrates the successful development and validation of a portable fluorescence imaging system, offering an efficient and accurate approach to detecting pregnancy-specific biomarkers in cattle. Its implications extend to improving dairy farm productivity by enabling timely and reliable reproductive management practices.

2.
CMAJ ; 195(44): E1499-E1508, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963621

RESUMO

BACKGROUND: Pharmacogenomic testing to identify variations in genes that influence metabolism of antidepressant medications can enhance efficacy and reduce adverse effects of pharmacotherapy for major depressive disorder. We sought to establish the cost-effectiveness of implementing pharmacogenomic testing to guide prescription of antidepressants. METHODS: We developed a discrete-time microsimulation model of care pathways for major depressive disorder in British Columbia, Canada, to evaluate the effectiveness and cost-effectiveness of pharmacogenomic testing from the public payer's perspective over 20 years. The model included unique patient characteristics (e.g., metabolizer phenotypes) and used estimates derived from systematic reviews, analyses of administrative data (2015-2020) and expert judgment. We estimated incremental costs, life-years and quality-adjusted life-years (QALYs) for a representative cohort of patients with major depressive disorder in BC. RESULTS: Pharmacogenomic testing, if implemented in BC for adult patients with moderate-severe major depressive disorder, was predicted to save the health system $956 million ($4926 per patient) and bring health gains of 0.064 life-years and 0.381 QALYs per patient (12 436 life-years and 74 023 QALYs overall over 20 yr). These savings were mainly driven by slowing or avoiding the transition to refractory (treatment-resistant) depression. Pharmacogenomic-guided care was associated with 37% fewer patients with refractory depression over 20 years. Sensitivity analyses estimated that costs of pharmacogenomic testing would be offset within about 2 years of implementation. INTERPRETATION: Pharmacogenomic testing to guide antidepressant use was estimated to yield population health gains while substantially reducing health system costs. These findings suggest that pharmacogenomic testing offers health systems an opportunity for a major value-promoting investment.


Assuntos
Transtorno Depressivo Maior , Adulto , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Farmacogenética , Depressão , Análise Custo-Benefício , Antidepressivos/uso terapêutico , Anos de Vida Ajustados por Qualidade de Vida , Colúmbia Britânica
3.
Nature ; 551(7678): 119-123, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29072300

RESUMO

A grand challenge of systems biology is to predict the kinetic responses of living systems to perturbations starting from the underlying molecular interactions. Changes in the nutrient environment have long been used to study regulation and adaptation phenomena in microorganisms and they remain a topic of active investigation. Although much is known about the molecular interactions that govern the regulation of key metabolic processes in response to applied perturbations, they are insufficiently quantified for predictive bottom-up modelling. Here we develop a top-down approach, expanding the recently established coarse-grained proteome allocation models from steady-state growth into the kinetic regime. Using only qualitative knowledge of the underlying regulatory processes and imposing the condition of flux balance, we derive a quantitative model of bacterial growth transitions that is independent of inaccessible kinetic parameters. The resulting flux-controlled regulation model accurately predicts the time course of gene expression and biomass accumulation in response to carbon upshifts and downshifts (for example, diauxic shifts) without adjustable parameters. As predicted by the model and validated by quantitative proteomics, cells exhibit suboptimal recovery kinetics in response to nutrient shifts owing to a rigid strategy of protein synthesis allocation, which is not directed towards alleviating specific metabolic bottlenecks. Our approach does not rely on kinetic parameters, and therefore points to a theoretical framework for describing a broad range of such kinetic processes without detailed knowledge of the underlying biochemical reactions.


Assuntos
Carbono/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Biomassa , Carbono/farmacologia , Meios de Cultura/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Cinética , Proteoma/efeitos dos fármacos , Proteoma/genética , Proteoma/metabolismo , Proteômica , Reprodutibilidade dos Testes
4.
Appl Environ Microbiol ; 88(5): e0142321, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044852

RESUMO

Turkeys (Meleagris gallopavo) provide a globally important source of protein and constitute the second most important source of poultry meat in the world. Bacterial diseases are common in commercial poultry production, causing significant production losses for farmers. Due to the increasingly recognized problems associated with large-scale/indiscriminate antibiotic use in agricultural settings, poultry producers need alternative methods to control common bacterial pathogens. In this study, we compared the cecal microbiota of wild and domestic turkeys, hypothesizing that environmental pressures faced by wild birds may select for a disease-resistant microbial community. Sequence analyses of 16S rRNA genes amplified from cecal samples indicate that free-roaming wild turkeys carry a rich and variable microbiota compared to domestic turkeys raised on large-scale poultry farms. Wild turkeys also had very low levels of Staphylococcus, Salmonella, and Escherichia coli compared to domestic turkeys. E. coli strains isolated from wild and domestic turkey cecal samples also belong to distinct phylogenetic backgrounds and differ in their propensity to carry virulence genes. E. coli strains isolated from factory-raised turkeys were far more likely to carry genes for capsule (kpsII and kpsIII) or siderophore (iroN and fyuA) synthesis than were those isolated from wild turkeys. These results suggest that the microbiota of wild turkeys may provide colonization resistance against common poultry pathogens. IMPORTANCE Due to the increasingly recognized problems associated with antibiotic use in agricultural settings, poultry producers need alternative methods to control common bacterial pathogens. In this study, we compare the microbiota of wild and domestic turkeys. The results suggest that free-ranging wild turkeys carry a distinct microbiome compared to farm-raised turkeys. The microbiome of wild birds contains very low levels of poultry pathogens compared to that of farm-raised birds. The microbiomes of wild turkeys may be used to guide the development of new ways to control disease in large-scale poultry production.


Assuntos
Microbioma Gastrointestinal , Doenças das Aves Domésticas , Animais , Escherichia coli , Filogenia , Doenças das Aves Domésticas/microbiologia , Prevalência , RNA Ribossômico 16S/genética , Perus/microbiologia
5.
Acc Chem Res ; 54(19): 3656-3666, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34524795

RESUMO

The spread of infectious diseases due to travel and trade can be seen throughout history, whether from early settlers or traveling businessmen. Increased globalization has allowed infectious diseases to quickly spread to different parts of the world and cause widespread infection. Posthoc analysis of more recent outbreaks-SARS, MERS, swine flu, and COVID-19-has demonstrated that the causative viruses were circulating through populations for days or weeks before they were first detected, allowing disease to spread before quarantines, contact tracing, and travel restrictions could be implemented. Earlier detection of future novel pathogens could decrease the time before countermeasures are enacted. In this Account, we examined a variety of novel technologies from the past 10 years that may allow for earlier detection of infectious diseases. We have arranged these technologies chronologically from pre-human predictive technologies to population-level screening tools. The earliest detection methods utilize artificial intelligence to analyze factors such as climate variation and zoonotic spillover as well as specific species and geographies to identify where the infection risk is high. Artificial intelligence can also be used to monitor health records, social media, and various publicly available data to identify disease outbreaks faster than traditional epidemiology. Secondary to predictive measures is monitoring infection in specific sentinel animal species, where domestic animals or wildlife are indicators of potential disease hotspots. These hotspots inform public health officials about geographic areas where infection risk in humans is high. Further along the timeline, once the disease has begun to infect humans, wastewater epidemiology can be used for unbiased sampling of large populations. This method has already been shown to precede spikes in COVID-19 diagnoses by 1 to 2 weeks. As total infections increase in humans, bioaerosol sampling in high-traffic areas can be used for disease monitoring, such as within an airport. Finally, as disease spreads more quickly between humans, rapid diagnostic technologies such as lateral flow assays and nucleic acid amplification become very important. Minimally invasive point-of-care methods can allow for quick adoption and use within a population. These individual diagnostic methods then transfer to higher-throughput methods for more intensive population screening as an infection spreads. There are many promising early warning technologies being developed. However, no single technology listed herein will prevent every future outbreak. A combination of technologies from across our infection timeline would offer the most benefit in preventing future widespread disease outbreaks and pandemics.


Assuntos
Doenças Transmissíveis Emergentes/diagnóstico , Animais , Inteligência Artificial , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Humanos , Programas de Rastreamento , Pandemias , SARS-CoV-2/isolamento & purificação , Águas Residuárias/microbiologia , Águas Residuárias/parasitologia , Águas Residuárias/virologia , Zoonoses/diagnóstico , Zoonoses/epidemiologia
6.
Genomics ; 113(3): 1366-1377, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33716184

RESUMO

Oxford Nanopore sequencing has been widely used to achieve complete genomes of bacterial pathogens. However, the error rates of Oxford Nanopore long reads are high. Various polishing algorithms using Illumina short reads to correct the errors in Oxford Nanopore long-read assemblies have been developed. The impact of polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads on improving genomic analyses was evaluated using both simulated and real reads. Ten species (10 strains) were selected for simulated reads, while real reads were tested on 11 species (11 strains). Oxford Nanopore long reads were assembled with Unicycler to produce a draft assembly, followed by three rounds of polishing with Illumina short reads using two polishing tools, Pilon and NextPolish. One round of NextPolish polishing generated genome completeness and accuracy parameters similar to the reference genomes, whereas two or three rounds of Pilon polishing were needed, though contiguity remained unchanged after polishing. The polished assemblies of Escherichia coli O157:H7, Salmonella Typhimurium, and Cronobacter sakazakii with simulated reads did not provide accurate plasmid identifications. One round of NextPolish polishing was needed for accurately identifying plasmids in Staphylococcus aureus and E. coli O26:H11 with real reads, whereas one and two rounds of Pilon polishing were necessary for these two strains, respectively. Polishing failed to provide an accurate antimicrobial resistance (AMR) genotype for S. aureus with real reads. One round of polishing recovered an accurate AMR genotype for Klebsiella pneumoniae with real reads. The reference genome and draft assembly of Citrobacter braakii with real reads differed, which carried blaCMY-83 and fosA6, respectively, while both genes were present after one round of polishing. However, polishing did not improve the assembly of E. coli O26:H11 with real reads to achieve numbers of virulence genes similar to the reference genome. The draft and polished assemblies showed a phylogenetic tree topology comparable with the reference genomes. For multilocus sequence typing and pan-genome analyses, one round of NextPolish polishing was sufficient to obtain accurate results, while two or three rounds of Pilon polishing were needed. Overall, NextPolish outperformed Pilon for polishing the Oxford Nanopore long-read assemblies of bacterial pathogens, though both polishing strategies improved genomic analyses compared to the draft assemblies.


Assuntos
Nanoporos , Escherichia coli , Genoma Bacteriano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Análise de Sequência de DNA/métodos , Staphylococcus aureus
7.
Infect Immun ; 89(10): e0035721, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34228495

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are major causes of urinary and bloodstream infections. ExPEC reservoirs are not completely understood. Some mastitis-associated E. coli (MAEC) strains carry genes associated with ExPEC virulence, including metal scavenging, immune avoidance, and host attachment functions. In this study, we investigated the role of the high-affinity zinc uptake (znuABC) system in the MAEC strain M12. Elimination of znuABC moderately decreased fitness during mouse mammary gland infections. The ΔznuABC mutant strain exhibited an unexpected growth delay in the presence of bile salts, which was alleviated by the addition of excess zinc. We isolated suppressor mutants with improved growth in bile salts, several of which no longer produced the K96 capsule made by strain M12. The addition of bile salts also reduced capsule production by strain M12 and ExPEC strain CP9, suggesting that capsule synthesis may be detrimental when bile salts are present. To better understand the role of the capsule, we compared the virulence of mastitis strain M12 with that of its unencapsulated ΔkpsCS mutant in two models of ExPEC disease. The wild-type strain successfully colonized mouse bladders and kidneys and was highly virulent in intraperitoneal infections. Conversely, the ΔkpsCS mutant was unable to colonize kidneys and was unable to cause sepsis. These results demonstrate that some MAEC strains may be capable of causing human ExPEC illness. The virulence of strain M12 in these infections is dependent on its capsule. However, capsule may interfere with zinc homeostasis in the presence of bile salts while in the digestive tract.


Assuntos
Cápsulas Bacterianas/metabolismo , Ácidos e Sais Biliares/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/metabolismo , Mastite/metabolismo , Zinco/metabolismo , Animais , Infecções por Escherichia coli/microbiologia , Feminino , Masculino , Mastite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Sepse/metabolismo , Sepse/microbiologia , Virulência/fisiologia , Fatores de Virulência/metabolismo
8.
Anal Chem ; 93(36): 12175-12180, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34469115

RESUMO

Malaria and typhoid fever are two febrile illnesses prevalent in the tropics that often present overlapping symptoms. In this work, we demonstrate an optical reader-based diagnostics platform for rapid codetection and quantification of two antigen targets: lipopolysaccharide (LPS) for typhoid fever and plasmodium lactate dehydrogenase (pLDH) for malaria infections. We report a limit of detection (LoD) of 5 ng/mL for LPS and 10 ng/mL for pLDH in a spiked serum test. We also validated the duplex test's performance of differentiating malaria infection, typhoid fever infection, and coinfection by testing clinical samples in human serum. Our platform provides the potential for further multiplexing by encoding different color codes to various detection targets. The rapid result (∼15 min), low cost (∼$2), and minimal volume requirement for human serum clinical samples (4 µL) of our diagnostic platform offer great potential for deployment in resource-limited settings to help distinguish common causes for acute febrile illnesses at the point-of-need.


Assuntos
Malária , Plasmodium , Febre Tifoide , Humanos , L-Lactato Desidrogenase , Malária/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Febre Tifoide/diagnóstico
9.
Planta Med ; 87(4): 314-324, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33445185

RESUMO

The use of DNA-based methods to authenticate botanical dietary supplements has been vigorously debated for a variety of reasons. More comparisons of DNA-based and chemical methods are needed, and concordant evaluation of orthogonal approaches on the same products will provide data to better understand the strengths and weaknesses of both approaches. The overall application of DNA-based methods is already firmly integrated into a wide array of continually modernizing stand alone and complementary authentication protocols. Recently, the use of full-length chloroplast genome sequences provided enhanced discriminatory capacity for closely related species of Echinacea compared to traditional DNA barcoding approaches (matK and rbcL). Here, two next-generation sequencing approaches were used: (1) genome skimming and (2) PCR amplicon (metabarcoding). The two genetic approaches were then combined with HPLC-UV to evaluate 20 commercially available dietary supplements of Echinacea representing "finished" products. The trade-offs involved in different DNA approaches were discussed, with a focus on how DNA methods support existing, accepted chemical methods. In most of the products (19/20), HPLC-UV suggested the presence of Echinacea spp. While metabarcoding was not useful with this genus and instead only resolved 7 products to the family level, genome skimming was able to resolve to species (9) or genus (1) with the 10/20 products where it was successful. Additional ingredients that HPLC-UV was unable to identify were also found in four products along with the relative sequence proportion of the constituents. Additionally, genome skimming was able to identify one product that was a different Echinacea species entirely.


Assuntos
Echinacea , Genoma de Cloroplastos , Cromatografia Líquida de Alta Pressão , Código de Barras de DNA Taxonômico , Suplementos Nutricionais/análise , Sequenciamento de Nucleotídeos em Larga Escala
10.
Food Microbiol ; 99: 103821, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119106

RESUMO

Shiga toxin-producing E. coli (STEC) are major foodborne pathogens. While many studies have focused on the "top-7 STEC", little is known for minor serogroups. A total of 284 non-top-7 STEC strains isolated from cattle feces were subjected to whole-genome sequencing (WGS) to determine the serotypes, the presence of virulence genes and antimicrobial resistance (AMR) determinants. Nineteen typeable and three non-typeable serotypes with novel O-antigen loci were identified. Twenty-one AMR genes and point mutations in another six genes that conferred resistance to 10 antimicrobial classes were detected, as well as 46 virulence genes. The distribution of 33 virulence genes and 15 AMR determinants exhibited significant differences among serotypes (p < 0.05). Among all strains, 81.7% (n = 232) and 14.1% (n = 40) carried stx2 and stx1 only, respectively; only 4.2% (n = 12) carried both. Subtypes stx1a, stx1c, stx2a, stx2c, stx2d, and stx2g were identified. Forty-six strains carried eae and stx2a and therefore had the potential cause severe diseases; 47 strains were genetically related to human clinical strains inferred from a pan-genome phylogenetic tree. We were able to demonstrate the utility of WGS as a surveillance tool to characterize the novel serotypes, as well as AMR and virulence profiles of uncommon STEC that could potentially cause human illness.


Assuntos
Doenças dos Bovinos/microbiologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bovinos , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fezes/microbiologia , Filogenia , Sorogrupo , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Virulência , Sequenciamento Completo do Genoma
11.
J Bacteriol ; 202(20)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32778558

RESUMO

Cohesion of biofilms made by Yersinia pestis and Yersinia pseudotuberculosis has been attributed solely to an extracellular polysaccharide matrix encoded by the hms genes (Hms-dependent extracellular matrix [Hms-ECM]). However, mutations in the Y. pseudotuberculosis BarA/UvrY/CsrB regulatory cascade enhance biofilm stability without dramatically increasing Hms-ECM production. We found that treatment with proteinase K enzyme effectively destabilized Y. pseudotuberculosiscsrB mutant biofilms, suggesting that cell-cell interactions might be mediated by protein adhesins or extracellular matrix proteins. We identified an uncharacterized trimeric autotransporter lipoprotein (YPTB2394), repressed by csrB, which has been referred to as YadE. Biofilms made by a ΔyadE mutant strain were extremely sensitive to mechanical disruption. Overexpression of yadE in wild-type Y. pseudotuberculosis increased biofilm cohesion, similar to biofilms made by csrB or uvrY mutants. We found that the Rcs signaling cascade, which represses Hms-ECM production, activated expression of yadE The yadE gene appears to be functional in Y. pseudotuberculosis but is a pseudogene in modern Y. pestis strains. Expression of functional yadE in Y. pestis KIM6+ weakened biofilms made by these bacteria. This suggests that although the YadE autotransporter protein increases Y. pseudotuberculosis biofilm stability, it may be incompatible with the Hms-ECM production that is essential for Y. pestis biofilm production in fleas. Inactivation of yadE in Y. pestis may be another instance of selective gene loss in the evolution of flea-borne transmission by this species.IMPORTANCE The evolution of Yersinia pestis from its Y. pseudotuberculosis ancestor involved gene acquisition and gene losses, leading to differences in biofilm production. Characterizing the unique biofilm features of both species may provide better understanding of how each adapts to its specific niches. This study identifies a trimeric autotransporter, YadE, that promotes biofilm stability of Y. pseudotuberculosis but which has been inactivated in Y. pestis, perhaps because it is not compatible with the Hms polysaccharide that is crucial for biofilms inside fleas. We also reveal that the Rcs signaling cascade, which represses Hms expression, activates YadE in Y. pseudotuberculosis The ability of Y. pseudotuberculosis to use polysaccharide or YadE protein for cell-cell adhesion may help it produce biofilms in different environments.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Yersinia pestis/crescimento & desenvolvimento , Yersinia pseudotuberculosis/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/genética , Pseudogenes , Seleção Genética , Sifonápteros/microbiologia , Sistemas de Secreção Tipo V/metabolismo , Yersinia pestis/genética , Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/microbiologia , Infecções por Yersinia pseudotuberculosis/transmissão
12.
BMC Genomics ; 21(1): 631, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928108

RESUMO

BACKGROUND: We benchmarked the hybrid assembly approaches of MaSuRCA, SPAdes, and Unicycler for bacterial pathogens using Illumina and Oxford Nanopore sequencing by determining genome completeness and accuracy, antimicrobial resistance (AMR), virulence potential, multilocus sequence typing (MLST), phylogeny, and pan genome. Ten bacterial species (10 strains) were tested for simulated reads of both mediocre- and low-quality, whereas 11 bacterial species (12 strains) were tested for real reads. RESULTS: Unicycler performed the best for achieving contiguous genomes, closely followed by MaSuRCA, while all SPAdes assemblies were incomplete. MaSuRCA was less tolerant of low-quality long reads than SPAdes and Unicycler. The hybrid assemblies of five antimicrobial-resistant strains with simulated reads provided consistent AMR genotypes with the reference genomes. The MaSuRCA assembly of Staphylococcus aureus with real reads contained msr(A) and tet(K), while the reference genome and SPAdes and Unicycler assemblies harbored blaZ. The AMR genotypes of the reference genomes and hybrid assemblies were consistent for the other five antimicrobial-resistant strains with real reads. The numbers of virulence genes in all hybrid assemblies were similar to those of the reference genomes, irrespective of simulated or real reads. Only one exception existed that the reference genome and hybrid assemblies of Pseudomonas aeruginosa with mediocre-quality long reads carried 241 virulence genes, whereas 184 virulence genes were identified in the hybrid assemblies of low-quality long reads. The MaSuRCA assemblies of Escherichia coli O157:H7 and Salmonella Typhimurium with mediocre-quality long reads contained 126 and 118 virulence genes, respectively, while 110 and 107 virulence genes were detected in their MaSuRCA assemblies of low-quality long reads, respectively. All approaches performed well in our MLST and phylogenetic analyses. The pan genomes of the hybrid assemblies of S. Typhimurium with mediocre-quality long reads were similar to that of the reference genome, while SPAdes and Unicycler were more tolerant of low-quality long reads than MaSuRCA for the pan-genome analysis. All approaches functioned well in the pan-genome analysis of Campylobacter jejuni with real reads. CONCLUSIONS: Our research demonstrates the hybrid assembly pipeline of Unicycler as a superior approach for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing.


Assuntos
Genoma Bacteriano , Genômica/métodos , Sequenciamento por Nanoporos/métodos , Benchmarking , Campylobacter jejuni , Mapeamento de Sequências Contíguas/métodos , Mapeamento de Sequências Contíguas/normas , Cronobacter sakazakii , Farmacorresistência Bacteriana , Genômica/normas , Listeria monocytogenes , Sequenciamento por Nanoporos/normas , Pseudomonas aeruginosa , Salmonella typhimurium , Virulência
13.
BMC Genomics ; 21(1): 544, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762642

RESUMO

BACKGROUND: Full chloroplast genomes provide high resolution taxonomic discrimination between closely related plant species and are quickly replacing single and multi-locus barcoding regions as reference materials of choice for DNA based taxonomic annotation of plants. Bixa orellana, commonly known as "achiote" and "annatto" is a plant used for both human and animal foods and was thus identified for full chloroplast sequencing for the Center for Veterinary Medicine (CVM) Complete Chloroplast Animal Feed database. This work was conducted in collaboration with the Instituto de Medicina Tradicional (IMET) in Iquitos, Peru. There is a wide range of color variation in pods of Bixa orellana for which genetic loci that distinguish phenotypes have not yet been identified. Here we apply whole chloroplast genome sequencing of "red" and "yellow" individuals of Bixa orellana to provide high quality reference genomes to support kmer database development for use identifying this plant from complex mixtures using shotgun data. Additionally, we describe chloroplast gene content, synteny and phylogeny, and identify an indel and snp that may be associated with seed pod color. RESULTS: Fully assembled chloroplast genomes were produced for both red and yellow Bixa orellana accessions (158,918 and 158,823 bp respectively). Synteny and gene content was identical to the only other previously reported full chloroplast genome of Bixa orellana (NC_041550). We observed a 17 base pair deletion at position 58,399-58,415 in both accessions, relative to NC_041550 and a 6 bp deletion at position 75,531-75,526 and a snp at position 86,493 in red Bixa orellana. CONCLUSIONS: Our data provide high quality reference genomes of individuals of red and yellow Bixa orellana to support kmer based identity markers for use with shotgun sequencing approaches for rapid, precise identification of Bixa orellana from complex mixtures. Kmer based phylogeny of full chloroplast genomes supports monophylly of Bixaceae consistent with alignment based approaches. A potentially discriminatory indel and snp were identified that may be correlated with the red phenotype.


Assuntos
Bixaceae , Genoma de Cloroplastos , Animais , Bixaceae/genética , Humanos , Filogenia , Extratos Vegetais
14.
Anal Chem ; 92(3): 2731-2738, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31944675

RESUMO

Antimicrobial resistance is recognized as one of the greatest emerging threats to public health. Antimicrobial resistant (AMR) microorganisms affect nearly 2 million people a year in the United States alone and place an estimated $20 billion burden on the healthcare system. The rise of AMR microorganisms can be attributed to a combination of overprescription of antimicrobials and a lack of accessible diagnostic methods. Delayed diagnosis is one of the primary reasons for empiric therapy, and diagnostic methods that enable rapid and accurate results are highly desirable to facilitate evidence-based treatment. This is particularly true for clinical situations at the point-of-care where access to state-of-the-art diagnostic equipment is scarce. Here, we present a capillary-based antimicrobial susceptibility testing platform (cAST), a unique approach that offers accelerated assessment of antimicrobial susceptibility in a low-cost and simple testing format. cAST delivers an expedited time-to-readout by means of optical assessment of bacteria incubated in a small capillary form factor along with a resazurin dye. cAST was designed using a combination of off-the-shelf and custom 3D-printed parts, making it extremely suitable for use in resource-limited settings. We demonstrate that growth of bacteria in cAST is approximately 25% faster than in a conventional microplate, further validate the diagnostic performance with clinical isolates, and show that cAST can deliver accurate antimicrobial susceptibility test results within 4-8 h.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Enterobacter cloacae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Tubo Capilar , Farmacorresistência Bacteriana/efeitos dos fármacos , Desenho de Equipamento , Testes de Sensibilidade Microbiana , Fenótipo , Impressão Tridimensional , Aço Inoxidável , Fatores de Tempo
15.
Microb Pathog ; 144: 104179, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32244043

RESUMO

Mastitis, resulting from mammary gland infection, is a common and painful disease associated with lactation. In addition to the impact on human and animal health, mastitis causes substantial economic losses in the dairy industry. Staphylococcus aureus is a frequent cause of mastitis worldwide. Despite significant progress in understanding S. aureus pathogenesis in general, much remains to be learned regarding virulence factors relevant in the context of mastitis. This review outlines the molecular mechanisms by which S. aureus acquires essential metals such as iron, zinc, manganese, copper, cobalt and nickel within lactating mammary glands, while exposing areas where our current knowledge is deficient. Increased understanding of how these factors facilitate bacterial survival in the lactating mammary gland can provide therapeutic targets for more effective mastitis prevention and treatment.


Assuntos
Mastite Bovina/microbiologia , Metais/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Animais , Bovinos , Feminino , Humanos , Imunidade , Ferro/metabolismo , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Humanas/microbiologia , Mastite Bovina/imunologia , Leite/microbiologia , Leite Humano/microbiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Fatores de Virulência
16.
Proc Natl Acad Sci U S A ; 114(51): 13513-13518, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203653

RESUMO

Micronutrient deficiencies such as those of vitamin A and iron affect a third of the world's population with consequences such as night blindness, higher child mortality, anemia, poor pregnancy outcomes, and reduced work capacity. Many efforts to prevent or treat these deficiencies are hampered by the lack of adequate, accessible, and affordable diagnostic methods that can enable better targeting of interventions. In this work, we demonstrate a rapid diagnostic test and mobile enabled platform for simultaneously quantifying iron (ferritin), vitamin A (retinol-binding protein), and inflammation (C-reactive protein) status. Our approach, enabled by combining multiple florescent markers and immunoassay approaches on a single test, allows us to provide accurate quantification in 15 min even though the physiological range of the markers of interest varies over five orders of magnitude. We report sensitivities of 88%, 100%, and 80% and specificities of 97%, 100%, and 97% for iron deficiency (ferritin <15 ng/mL or 32 pmol/L), vitamin A deficiency (retinol-binding protein <14.7 µg/mL or 0.70 µmol/L) and inflammation status (C-reactive protein >3.0 µg/mL or 120 nmol/L), respectively. This technology is suitable for point-of-care use in both resource-rich and resource-limited settings and can be read either by a standard laptop computer or through our previously developed NutriPhone technology. If implemented as either a population-level screening or clinical diagnostic tool, we believe this platform can transform nutritional status assessment and monitoring globally.


Assuntos
Anemia Ferropriva/sangue , Técnicas de Diagnóstico Molecular/métodos , Testes Imediatos , Deficiência de Vitamina A/sangue , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Ferritinas/sangue , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Imunoensaio/normas , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Diagnóstico Molecular/normas , Proteínas de Ligação ao Retinol/metabolismo , Smartphone
17.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271875

RESUMO

Oxford Nanopore sequencing can be used to achieve complete bacterial genomes. However, the error rates of Oxford Nanopore long reads are greater compared to Illumina short reads. Long-read assemblers using a variety of assembly algorithms have been developed to overcome this deficiency, which have not been benchmarked for genomic analyses of bacterial pathogens using Oxford Nanopore long reads. In this study, long-read assemblers, namely Canu, Flye, Miniasm/Racon, Raven, Redbean, and Shasta, were thus benchmarked using Oxford Nanopore long reads of bacterial pathogens. Ten species were tested for mediocre- and low-quality simulated reads, and 10 species were tested for real reads. Raven was the most robust assembler, obtaining complete and accurate genomes. All Miniasm/Racon and Raven assemblies of mediocre-quality reads provided accurate antimicrobial resistance (AMR) profiles, while the Raven assembly of Klebsiella variicola with low-quality reads was the only assembly with an accurate AMR profile among all assemblers and species. All assemblers functioned well for predicting virulence genes using mediocre-quality and real reads, whereas only the Raven assemblies of low-quality reads had accurate numbers of virulence genes. Regarding multilocus sequence typing (MLST), Miniasm/Racon was the most effective assembler for mediocre-quality reads, while only the Raven assemblies of Escherichia coli O157:H7 and K. variicola with low-quality reads showed positive MLST results. Miniasm/Racon and Raven were the best performers for MLST using real reads. The Miniasm/Racon and Raven assemblies showed accurate phylogenetic inference. For the pan-genome analyses, Raven was the strongest assembler for simulated reads, whereas Miniasm/Racon and Raven performed the best for real reads. Overall, the most robust and accurate assembler was Raven, closely followed by Miniasm/Racon.


Assuntos
Bactérias/genética , Genoma Bacteriano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Biologia Computacional/métodos , Farmacorresistência Bacteriana , Tipagem de Sequências Multilocus , Filogenia , Reprodutibilidade dos Testes , Virulência/genética , Fatores de Virulência/genética
18.
Anal Chem ; 91(8): 5415-5423, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30896928

RESUMO

In this work, we demonstrate a rapid diagnostic platform with potential to transform clinical diagnosis of acute febrile illnesses in resource-limited settings. Acute febrile illnesses such as dengue and chikungunya, which pose high burdens of disease in tropical regions, share many nonspecific symptoms and are difficult to diagnose based on clinical history alone in the absence of accessible laboratory diagnostics. Through a unique color-mixing encoding and readout strategy, our platform enabled consistent and accurate multiplexed detection of dengue and chikungunya IgM/IgG antibodies in human clinical samples within 30 min. Our multiplex assay offers several advantages over conventional rapid diagnostic tests deployed in resource-limited settings, including a low sample volume requirement and the ability to concurrently detect four analytes. Our platform is a step toward multiplexed diagnostics that will be transformative for disease management in resource-limited settings by enabling informed treatment decisions through accessible evidence-based diagnosis.


Assuntos
Febre de Chikungunya/diagnóstico , Colorimetria , Dengue/diagnóstico , Humanos , Imunoglobulina G/análise , Imunoglobulina M/análise , Tamanho da Partícula , Propriedades de Superfície
19.
Malar J ; 18(1): 313, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533756

RESUMO

BACKGROUND: Malaria continues to impose a tremendous burden in terms of global morbidity and mortality, yet even today, a large number of diagnoses are presumptive resulting in lack of or inappropriate treatment. METHODS: In this work, a two-colour lateral flow immunoassay (LFA) system was developed to identify infections by Plasmodium spp. and differentiate Plasmodium falciparum infection from the other three human malaria species (Plasmodium vivax, Plasmodium ovale, Plasmodium malariae). To achieve this goal, red and blue colours were encoded to two markers on a single test line of strips, for simultaneous detection of PfHRP2 (red), a marker specific for P. falciparum infection, and pLDH (blue), a pan-specific marker for infections by all species of Plasmodium. The assay performance was first optimized and evaluated with recombinant malarial proteins spiked in washing buffer at various concentrations from 0 to 1000 ng mL-1. The colour profiles developed on the single test line were discriminated and quantified: colour types corresponded to malaria protein species; colour intensities represented protein concentration levels. RESULTS: The limit of detection (the lowest concentrations of malaria antigens that can be distinguished from blank samples) and the limit of colour discrimination (the limit to differentiate pLDH from PfHRP2) were defined for the two-colour assay from the spiked buffer test, and the two limits were 31.2 ng mL-1 and 7.8 ng mL-1, respectively. To further validate the efficacy of the assay, 25 human whole blood frozen samples were tested and successfully validated against ELISA and microscopy results: 15 samples showed malaria negative; 5 samples showed P. falciparum positive; 5 samples showed P. falciparum negative, but contained other malaria species. CONCLUSIONS: The assay provides a simple method to quickly identify and differentiate infection by different malarial parasites at the point-of-need and overcome the physical limitations of traditional LFAs, improving the multiplexing potential for simultaneous detection of various biomarkers.


Assuntos
Testes Diagnósticos de Rotina/métodos , Imunoensaio/métodos , Malária/diagnóstico , Plasmodium/isolamento & purificação , Humanos , Malária/classificação
20.
BMC Genomics ; 19(1): 896, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30526482

RESUMO

BACKGROUND: The application of genomic data and bioinformatics for the identification of restricted or illegally-sourced natural products is urgently needed. The taxonomic identity and geographic provenance of raw and processed materials have implications in sustainable-use commercial practices, and relevance to the enforcement of laws that regulate or restrict illegally harvested materials, such as timber. Improvements in genomics make it possible to capture and sequence partial-to-complete genomes from challenging tissues, such as wood and wood products. RESULTS: In this paper, we report the success of an alignment-free genome comparison method, [Formula: see text] that differentiates different geographic sources of white oak (Quercus) species with a high level of accuracy with very small amount of genomic data. The method is robust to sequencing errors, different sequencing laboratories and sequencing platforms. CONCLUSIONS: This method offers an approach based on genome-scale data, rather than panels of pre-selected markers for specific taxa. The method provides a generalizable platform for the identification and sourcing of materials using a unified next generation sequencing and analysis framework.


Assuntos
DNA de Plantas/genética , Genoma de Planta , Geografia , Quercus/genética , Alinhamento de Sequência/métodos , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA