Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Ecol Evol ; 12(4): e8795, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386875

RESUMO

Like large carnivores, hunters both kill and scare ungulates, and thus might indirectly affect plant performance through trophic cascades. In this study, we hypothesized that intensive hunting and enduring fear of humans have caused moose and other forest ungulates to partly avoid areas near human infrastructure (perceived hunting risk), with positive cascading effects on recruitment of trees. Using data from the Norwegian forest inventory, we found decreasing browsing pressure and increasing tree recruitment in areas close to roads and houses, where ungulates are more likely to encounter humans. However, although browsing and recruitment were negatively related, reduced browsing was only responsible for a small proportion of the higher tree recruitment near human infrastructure. We suggest that the apparently weak cascading effect occurs because the recorded browsing pressure only partly reflects the long-term browsing intensity close to humans. Accordingly, tree recruitment was also related to the density of small trees 5-10 years earlier, which was higher close to human infrastructure. Hence, if small tree density is a product of the browsing pressure in the past, the cascading effect is probably stronger than our estimates suggest. Reduced browsing near roads and houses is most in line with risk avoidance driven by fear of humans (behaviorally mediated), and not because of excessive hunting and local reduction in ungulate density (density mediated).

2.
For Ecosyst ; 7(1): 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32834905

RESUMO

PAST: In the early twentieth century, forestry was one of the most important sectors in Norway and an agitated discussion about the perceived decline of forest resources due to over-exploitation was ongoing. To base the discussion on facts, the young state of Norway established Landsskogtakseringen - the world's first National Forest Inventory (NFI). Field work started in 1919 and was carried out by county. Trees were recorded on 10 m wide strips with 1-5 km interspaces. Site quality and land cover categories were recorded along each strip. Results for the first county were published in 1920, and by 1930 most forests below the coniferous tree line were inventoried. The 2nd to 5th inventories followed in the years 1937-1986. As of 1954, temporary sample plot clusters on a 3 km × 3 km grid were used as sampling units. PRESENT: The current NFI grid was implemented in the 6th NFI from 1986 to 1993, when permanent plots on a 3 km × 3 km grid were established below the coniferous tree line. As of the 7th inventory in 1994, the NFI is continuous, and 1/5 of the plots are measured annually. All trees with a diameter ≥ 5 cm are recorded on circular, 250 m2 plots. The NFI grid was expanded in 2005 to cover alpine regions with 3 km × 9 km and 9 km × 9 km grids. In 2012, the NFI grid within forest reserves was doubled along the cardinal directions. Clustered temporary plots are used periodically to facilitate county-level estimates. As of today, more than 120 variables are recorded in the NFI including bilberry cover, drainage status, deadwood, and forest health. Land-use changes are monitored and trees outside forests are recorded. FUTURE: Considerable research efforts towards the integration of remote sensing technologies enable the publication of the Norwegian Forest Resource Map since 2015, which is also used for small area estimation at the municipality level. On the analysis side, capacity and software for long term growth and yield prognosis are being developed. Furthermore, we foresee the inclusion of further variables for monitoring ecosystem services, and an increasing demand for mapped information. The relatively simple NFI design has proven to be a robust choice for satisfying steadily increasing information needs and concurrently providing consistent time series.

3.
PLoS One ; 11(8): e0161361, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570973

RESUMO

The re-measurement of permanent forest inventories offers a unique opportunity to assess the occurrence and impact of forest disturbances. The present study aims at exploring the main forest damages in Norway based on the extensive data of several consecutive national forest inventories during the period 1995-2014. Five of the most common disturbance agents in Norway are selected for analysis: wind, snow, browsing, fungus and insect damage. The analyses focuses on the frequency and variation along time, the average damage at stand level and the spatial patterns of damage occurrence, resulting in a characterization of the damage produced by disturbances in Norway. The highest damage occurrences by disturbance agent are due to browsing, snow and wind. Snow presents a decreasing temporally trend in damage frequency in the studied period. By forest type, mature and intermediate birch forest are found to be more affected by snow damage, whereas mature spruce forest is by wind damage. The results from this study provide support to the hypothesis that damages by autumnal moth (Epirrita autumnata) on birch are more common in mature stands. No major attacks from bark beetle (Ips typographus) are found, probably related to the lack of major storm damages in the period. Forest types susceptibility to fungus has no apparent variation over time except in the last years, as increased occurrence is observed on mature spruce stands probably correlated with warmer than average periods. Browsing damage causes the most severe losses, as expected, in young stands, and is allocated mainly on the most productive forests. Although some of the disturbances present locally moderate effects, the results show no major disturbances threatening Norwegian forests in the studied period. Finally, the Norwegian national forest inventory demonstrates its reliability as a basis to understand the occurrence and effects of major natural disturbances.


Assuntos
Florestas , Animais , Ecossistema , Fungos/fisiologia , Mariposas , Noruega , Neve , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA