Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci ; 89(7): 4331-4344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38783574

RESUMO

Color and shape are important quality attributes in baked goods, particularly cookies. Composition and processing conditions determine and influence color development and morphological changes in these baked goods. The objective of this study was to systematically evaluate the evolution of color and shape during baking to determine useful correlations that can be implemented during the assessment and modeling of the baking process. Cookies (AACC-I standard protocol 10-53.01) were baked at 185, 205, and 225°C. Moisture content, water activity, surface temperature, characteristic dimensions (radius and thickness), and color indexes (lightness, redness, blueness, and browning index [BI]) were monitored at different locations on the cookie surface and baking times. Relationships among the tested conditions were explored using correlation analysis. The cookies' dimensions and color indexes were strongly correlated with changes in moisture content over time, and those relationships were characterized using empirical models. The temperature dependence of the kinetic parameters of the changes in lightness and BI was also described and deemed independent of the location on the cookie surface. This study provides insights into the influence of heat and mass transfer on the physical and physicochemical changes of cookies during baking. The kinetic and secondary models developed in this study can serve as important components for establishing a comprehensive approach for coupling heat transfer, mass transfer, and reaction kinetics to estimate and optimize cookie-baking processes. PRACTICAL APPLICATION: The findings from this study provide valuable information for better understanding the morphological changes and color developments during the cookie-baking process. The quantitative data and models generated in this study will allow identifying baking conditions for better quality development.


Assuntos
Cor , Culinária , Temperatura Alta , Culinária/métodos , Cinética , Água , Reação de Maillard
2.
J Food Sci ; 89(2): 1154-1166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161277

RESUMO

Wheat kernels harbor a diverse microflora that can negatively affect the suitability of the grains for further processing. To reduce surface microflora, a kernel disinfection method is required that does not affect grain functionality. Three different versions of gas phase hydroxyl-radical processes were compared with the common method for grain disinfection, that is, a bleach treatment. The gas phase hydroxyl-radicals are generated by the UV-C mediated degradation of hydrogen peroxide and/or ozone in a near water-free process. It was found that treating kernels with a bleach solution could reduce total aerobic count (TAC) and fungal count to below the level of enumeration. In comparison, the gas phase hydroxyl-radical treatment, that is, H2 O2 -UV-ozone treatment, could support a 1.3 log count reduction (LCR) in TAC and a 1.1 LCR in fungal count. The microbial load reduction for the wholemeal samples was less pronounced as endophytic microorganisms were less affected by all treatments, hinting at a limited penetration depth of the treatments. Despite reducing the microbial load on the kernel surface through the bleach and H2 O2 -UV-ozone treatments, none of these treatments resulted in a reduced microbial count on grains that underwent sprouting after the treatments. No negative effect on germination power or development of the seedling was observed for any of the treatments. The gluten aggregation behavior and xylanase activity of the wholemeal also remained unchanged after the gas phase hydroxyl-radical treatments. Our findings suggest that UV-H2 O2 -ozone treatment shows promise for dry-kernel disinfection, but further optimization of the processing parameters is required.


Assuntos
Anti-Infecciosos , Ozônio , Desinfecção/métodos , Triticum , Radical Hidroxila , Raios Ultravioleta
3.
Food Sci Technol Int ; 23(1): 86-96, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27440155

RESUMO

Cape gooseberry (Physalis peruviana L.) fruits are highly perishable berries that exhibit a climacteric respiratory behavior. The objective of this study was to evaluate the effect of ethylene and the ethylene action inhibitor 1-methylcyclopropene on the postharvest behavior of cape gooseberry fruits (ecotype Colombia). Fruits were treated with ethylene, in an ethephon application (1000 µL L-1), and pretreated with 1-methylcyclopropene (1 µL L-1), 1-methylcyclopropene+ethylene, and results compared with a control without application. Subsequently, the fruits were maintained at room temperature (20 ℃, 75% RH) for up to 11 days. The pretreatment of the cape gooseberry fruits with 1-methylcyclopropene delayed most of the ripening-associated parameters, with a reduction in the respiration rate and ethylene production, skin color development, total soluble solids, total carotenoid content, loss of firmness, loss of total titratable acidity and emission of volatile compounds such as ethyl octanoate, ethyl butanoate, ethyl decanoate, and hexyl decanoate. Conversely, application of ethephon accelerated most of these physiological changes and also overcame most of the effects prevented by the ethylene action inhibitor. Altogether, the results supported the idea of a climacteric-like behavior for cape gooseberry fruits and pointing out that the pretreatment with 1-methylcyclopropene may be a promising and efficient postharvest treatment to delay maturity and extend the postharvest period.


Assuntos
Conservantes de Alimentos/química , Frutas/química , Physalis/química , Carotenoides/análise , Cor , Comportamento do Consumidor , Ciclopropanos/química , Etilenos/química , Análise de Alimentos , Armazenamento de Alimentos , Valor Nutritivo , Paladar , Temperatura , Compostos Orgânicos Voláteis/análise
4.
Food Chem ; 209: 144-53, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27173546

RESUMO

The effect of high (HMP) and low (LMP) methoxylated pectins (2%w/w) on the rate and extent of the mass transfer of monosaccharides, amino acids, and a corn oil-in-water emulsion across a cellulose membrane was evaluated. A sigmoidal response kinetic analysis was used to calculate both the diffusion coefficients (rate) and the amount of nutrients transferred through the membrane (extent). In all cases, except for lysine, HMP was more effective than LMP in inhibiting both the rate and extent of the mass transfer of nutrients through the membrane. LMP and HMP, e.g., reduced 1.3 and 3.0times, respectively, the mass transfer rate of glucose, as compared to control (containing no pectin), and 1.3 and 1.5times, respectively, the amount of glucose transferred through the membrane. Viscosity, molecular interactions, and flocculation were the most important parameters controlling the mass transfer of electrically neutral nutrients, electrically charged nutrients, and emulsified lipids, respectively.


Assuntos
Aminoácidos/química , Óleo de Milho/química , Monossacarídeos/química , Pectinas/química , Água/química , Difusão , Emulsões/química , Alimentos , Cinética , Viscosidade
5.
J Agric Food Chem ; 63(38): 8510-8, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26335612

RESUMO

Protein nanoparticles are often not very stable in a complex food matrix because they are primarily stabilized by electrostatic repulsion. In this study, we envisaged the stabilization of zein nanoparticles through Maillard conjugation reactions with polysaccharides of different molecular mass. Zein nanoparticles (0.5% w/v) containing resveratrol (0.025% w/v grape skin extract) were produced by liquid antisolvent precipitation and coated with Maillard conjugates (MC) of sodium caseinate and different molecular mass carbohydrates during particle production. Zein nanoparticles coated with conjugated polysaccharides of 2.8, 37, and 150 kDa had diameters of 198 ± 5, 176 ± 6, and 180 ± 3 nm, respectively. The encapsulation efficiency (∼83%) was not affected by conjugation, but the conjugates significantly improved particle stability against changes in pH (2.0-9.0), CaCl2 addition (up to 100 mM), and heat treatment (30-90 °C, 30 min). Zein nanoparticles coated by MC may therefore be suitable delivery systems for hydrophobic bioactive molecules in a wide range of commercial products.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Zeína/química , Caseínas/química , Precipitação Química , Dextranos/química , Reação de Maillard , Tamanho da Partícula
6.
Food Funct ; 5(12): 3083-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312704

RESUMO

A simulated in vitro digestion model was used to elucidate the impact of dietary fibers on the digestion rate of emulsified lipids. The influence of polysaccharide type (chitosan (cationic), methyl cellulose (non-ionic), and pectin (anionic)) and initial concentration (0.4 to 3.6% (w/w)) was examined. 2% (w/w) corn oil-in-water emulsions stabilized by 0.2% (w/w) Tween-80 were prepared, mixed with polysaccharide, and then subjected to an in vitro digestion model (37 °C): initial (pH 7.0); oral (pH 6.8; 10 min); gastric (pH 2.5; 120 min); and, intestinal (pH 7.0; 120 min) phases. The impact of polysaccharides on lipid digestion, ζ-potential, particle size, viscosity, and stability was determined. The rate and extent of lipid digestion decreased with increasing pectin, methyl cellulose, and chitosan concentrations. The free fatty acids released after 120 min of lipase digestion were 46, 63, and 81% (w/w) for methyl cellulose, pectin, and chitosan, respectively (3.6% (w/w) initial polysaccharide), indicating that methyl cellulose had the highest capacity to inhibit lipid digestion, followed by pectin, and then chitosan. The impact of the polysaccharides on lipid digestion was attributed to their ability to induce droplet flocculation, and/or due to their interactions with molecular species involved in lipid hydrolysis, such as bile salts, fatty acids, and calcium. These results have important implications for understanding the influence of dietary fibers on lipid digestion. The control of lipid digestibility within the gastrointestinal tract might be important for the development of reduced-calorie emulsion-based functional food products.


Assuntos
Quitosana/metabolismo , Fibras na Dieta/metabolismo , Digestão , Trato Gastrointestinal/metabolismo , Metabolismo dos Lipídeos , Metilcelulose/metabolismo , Pectinas/metabolismo , Humanos , Modelos Biológicos
7.
J Agric Food Chem ; 62(52): 12620-30, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25479310

RESUMO

An in vitro gastrointestinal model consisting of oral, gastric, and intestinal phases was used to elucidate the impact of pectin on the digestion of emulsified lipids. Pectin reduced the extent of lipid digestion, which was attributed to its binding interactions with specific gastrointestinal components. The interaction of pectin with bile salts, lipase, CaCl2, and NaCl was therefore investigated by turbidity, microstructure, electrophoresis, and isothermal titration calorimetry (ITC) at pH 7.0 and 37 °C. ITC showed that the interaction of pectin was endothermic with bile salts, but exothermic with CaCl2, NaCl, and lipase. Electrophoresis, microstructure, and turbidity measurements showed that anionic pectin formed electrostatic complexes with calcium ions, which may have decreased lipid digestion due to increased lipid flocculation or microgel formation because this would reduce the surface area of lipid exposed to the lipase. This research provides valuable insights into the physicochemical and molecular mechanisms of the interaction of pectin with gastrointestinal components that may affect the rate and extent of lipid digestion.


Assuntos
Ácidos e Sais Biliares/metabolismo , Cálcio/metabolismo , Fibras na Dieta/metabolismo , Digestão , Trato Gastrointestinal/metabolismo , Lipase/metabolismo , Pectinas/metabolismo , Ácidos e Sais Biliares/química , Cálcio/química , Calorimetria , Fibras na Dieta/análise , Eletroforese , Trato Gastrointestinal/química , Trato Gastrointestinal/enzimologia , Humanos , Lipase/química , Metabolismo dos Lipídeos , Lipídeos/química , Modelos Biológicos , Pectinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA