Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Cell ; 168(1-2): 59-72.e13, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28065413

RESUMO

Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.


Assuntos
Leucemia Aguda Bifenotípica/tratamento farmacológico , Leucemia Aguda Bifenotípica/metabolismo , Proteólise/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/metabolismo , Enzimas de Conjugação de Ubiquitina
2.
Cell ; 153(6): 1327-39, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23746844

RESUMO

The transcription factor HIF1A is a key mediator of the cellular response to hypoxia. Despite the importance of HIF1A in homeostasis and various pathologies, little is known about how it regulates RNA polymerase II (RNAPII). We report here that HIF1A employs a specific variant of the Mediator complex to stimulate RNAPII elongation. The Mediator-associated kinase CDK8, but not the paralog CDK19, is required for induction of many HIF1A target genes. HIF1A induces binding of CDK8-Mediator and the super elongation complex (SEC), containing AFF4 and CDK9, to alleviate RNAPII pausing. CDK8 is dispensable for HIF1A chromatin binding and histone acetylation, but it is essential for binding of SEC and RNAPII elongation. Global analysis of active RNAPII reveals that hypoxia-inducible genes are paused and active prior to their induction. Our results provide a mechanistic link between HIF1A and CDK8, two potent oncogenes, in the cellular response to hypoxia.


Assuntos
Hipóxia Celular , Quinase 8 Dependente de Ciclina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Complexo Mediador/metabolismo , Neoplasias/metabolismo , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Acetilação , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/química , Quinases Ciclina-Dependentes/metabolismo , Células HeLa , Histonas/metabolismo , Humanos
3.
Mol Cell ; 76(3): 485-499.e8, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31495563

RESUMO

Transcriptional responses to external stimuli remain poorly understood. Using global nuclear run-on followed by sequencing (GRO-seq) and precision nuclear run-on sequencing (PRO-seq), we show that CDK8 kinase activity promotes RNA polymerase II pause release in response to interferon-γ (IFN-γ), a universal cytokine involved in immunity and tumor surveillance. The Mediator kinase module contains CDK8 or CDK19, which are presumed to be functionally redundant. We implemented cortistatin A, chemical genetics, transcriptomics, and other methods to decouple their function while assessing enzymatic versus structural roles. Unexpectedly, CDK8 and CDK19 regulated different gene sets via distinct mechanisms. CDK8-dependent regulation required its kinase activity, whereas CDK19 governed IFN-γ responses through its scaffolding function (i.e., it was kinase independent). Accordingly, CDK8, not CDK19, phosphorylates the STAT1 transcription factor (TF) during IFN-γ stimulation, and CDK8 kinase inhibition blocked activation of JAK-STAT pathway TFs. Cytokines such as IFN-γ rapidly mobilize TFs to "reprogram" cellular transcription; our results implicate CDK8 and CDK19 as essential for this transcriptional reprogramming.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fibroblastos/efeitos dos fármacos , Interferon gama/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Fibroblastos/enzimologia , Fibroblastos/virologia , Células HCT116 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , RNA Polimerase II/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Vesiculovirus/patogenicidade
4.
Cell ; 140(2): 280-93, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20141841

RESUMO

SIRT6 is a member of a highly conserved family of NAD(+)-dependent deacetylases with various roles in metabolism, stress resistance, and life span. SIRT6-deficient mice develop normally but succumb to a lethal hypoglycemia early in life; however, the mechanism underlying this hypoglycemia remained unclear. Here, we demonstrate that SIRT6 functions as a histone H3K9 deacetylase to control the expression of multiple glycolytic genes. Specifically, SIRT6 appears to function as a corepressor of the transcription factor Hif1alpha, a critical regulator of nutrient stress responses. Consistent with this notion, SIRT6-deficient cells exhibit increased Hif1alpha activity and show increased glucose uptake with upregulation of glycolysis and diminished mitochondrial respiration. Our studies uncover a role for the chromatin factor SIRT6 as a master regulator of glucose homeostasis and may provide the basis for novel therapeutic approaches against metabolic diseases, such as diabetes and obesity.


Assuntos
Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sirtuínas/metabolismo , Animais , Respiração Celular , Transportador de Glucose Tipo 1 , Glicólise , Camundongos , Camundongos Knockout , Sirtuínas/genética
5.
Proc Natl Acad Sci U S A ; 119(11)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217532

RESUMO

The impacts of interferon (IFN) signaling on COVID-19 pathology are multiple, with both protective and harmful effects being documented. We report here a multiomics investigation of systemic IFN signaling in hospitalized COVID-19 patients, defining the multiomics biosignatures associated with varying levels of 12 different type I, II, and III IFNs. The antiviral transcriptional response in circulating immune cells is strongly associated with a specific subset of IFNs, most prominently IFNA2 and IFNG. In contrast, proteomics signatures indicative of endothelial damage and platelet activation associate with high levels of IFNB1 and IFNA6. Seroconversion and time since hospitalization associate with a significant decrease in a specific subset of IFNs. Additionally, differential IFN subtype production is linked to distinct constellations of circulating myeloid and lymphoid immune cell types. Each IFN has a unique metabolic signature, with IFNG being the most associated with activation of the kynurenine pathway. IFNs also show differential relationships with clinical markers of poor prognosis and disease severity. For example, whereas IFNG has the strongest association with C-reactive protein and other immune markers of poor prognosis, IFNB1 associates with increased neutrophil to lymphocyte ratio, a marker of late severe disease. Altogether, these results reveal specialized IFN action in COVID-19, with potential diagnostic and therapeutic implications.


Assuntos
Sangue/metabolismo , COVID-19/imunologia , Interferons/sangue , Proteoma , Transcriptoma , COVID-19/sangue , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Humanos , Pacientes Internados
6.
Mol Cell ; 62(1): 1-2, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058782

RESUMO

Diverse classes of noncoding RNAs have been recently established, but the defining criteria for each class are not always obvious. New research from Paralkar et al. (2016) in this issue of Molecular Cell challenges the distinction between long noncoding RNAs and enhancer-derived RNAs, and provides an experimental approach to define their mechanism of action.


Assuntos
RNA Longo não Codificante/genética , RNA não Traduzido
7.
Haematologica ; 108(12): 3418-3432, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439373

RESUMO

Metabolomics studies in sickle cell disease (SCD) have been so far limited to tens of samples, owing to technical and experimental limitations. To overcome these limitations, we performed plasma metabolomics analyses on 596 samples from patients with SCD enrolled in the WALK-PHaSST study (clinicaltrials gov. Identifier: NCT00492531). Clinical covariates informed the biological interpretation of metabolomics data, including genotypes (hemoglobin [Hb] SS, hemoglobin SC), history of recent transfusion (HbA%), response to hydroxyurea treatment (fetal Hb%). We investigated metabolic correlates to the degree of intravascular hemolysis, cardiorenal function, as determined by tricuspid regurgitation velocity (TRV), estimated glomerular filtration rate (eGFR), and overall hazard ratio (unadjusted or adjusted by age). Recent transfusion events or hydroxyurea treatment were associated with elevation in plasma-free fatty acids and decreases in acyl-carnitines, urate, kynurenine, indoles, carboxylic acids, and glycine- or taurine-conjugated bile acids. High levels of these metabolites, along with low levels of plasma S1P and L-arginine were identified as top markers of hemolysis, cardiorenal function (TRV, eGFR), and overall hazard ratio. We thus uploaded all omics and clinical data on a novel online portal that we used to identify a potential mechanism of dysregulated red cell S1P synthesis and export as a contributor to the more severe clinical manifestations in patients with the SS genotype compared to SC. In conclusion, plasma metabolic signatures - including low S1P, arginine and elevated kynurenine, acyl-carnitines and bile acids - are associated with clinical manifestation and therapeutic efficacy in SCD patients, suggesting new avenues for metabolic interventions in this patient population.


Assuntos
Anemia Falciforme , Doença da Hemoglobina SC , Humanos , Hidroxiureia/uso terapêutico , Cinurenina/uso terapêutico , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Doença da Hemoglobina SC/complicações , Hemólise , Hemoglobina Falciforme , Ácidos e Sais Biliares/uso terapêutico
8.
J Peripher Nerv Syst ; 28(3): 460-470, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37341347

RESUMO

BACKGROUND AND AIMS: The lack of easily measurable biomarkers remains a challenge in executing clinical trials for diabetic neuropathy (DN). Plasma Neurofilament light chain (NFL) concentration is a promising biomarker in immune-mediated neuropathies. Longitudinal studies evaluating NFL in DN have not been performed. METHODS: A nested case-control study was performed on participants with youth-onset type 2 diabetes enrolled in the prospective Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study. Plasma NFL concentrations were measured at 4-year intervals from 2008 to 2020 in 50 participants who developed DN and 50 participants with type 2 diabetes who did not develop DN. RESULTS: NFL concentrations were similar in the DN and no DN groups at the first assessment. Concentrations were higher in DN participants at all subsequent assessment periods (all p < .01). NFL concentrations increased over time in both groups, with higher degrees of change in DN participants (interaction p = .045). A doubling of the NFL value at Assessment 2 in those without DN increased the odds of ultimate DN outcome by an estimated ratio of 2.86 (95% CI: [1.30, 6.33], p = .0046). At the final study visit, positive Spearman correlations (controlled for age, sex, diabetes duration, and BMI) were observed between NFL and HbA1c (0.48, p < .0001), total cholesterol (0.25, p = .018), and low-density lipoprotein (LDL (0.30, p = .0037)). Negative correlations were observed with measures of heart rate variability (-0.42 to -0.46, p = <.0001). INTERPRETATION: The findings that NFL concentrations are elevated in individuals with youth-onset type 2 diabetes, and increase more rapidly in those who develop DN, suggest that NFL could be a valuable biomarker for DN.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Humanos , Adolescente , Estudos de Casos e Controles , Filamentos Intermediários , Proteínas de Neurofilamentos , Biomarcadores
9.
Mol Cell ; 53(3): 365-7, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24507714

RESUMO

In this issue, Reddy et al. (2014) reveal a new twist in the molecular mechanism leading to p53 activation upon cellular stress, illuminating an unexpected nuclear role for a nucleotide biosynthetic enzyme in regulation of a potent tumor suppressor.


Assuntos
Carbono-Nitrogênio Ligases/fisiologia , Nucleotídeos/biossíntese , Ribonucleoproteínas/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Feminino , Humanos
10.
Proc Natl Acad Sci U S A ; 116(48): 24231-24241, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31699819

RESUMO

Trisomy 21 (T21) causes Down syndrome (DS), a condition characterized by high prevalence of autoimmune disorders. However, the molecular and cellular mechanisms driving this phenotype remain unclear. Building upon our previous finding that T cells from people with DS show increased expression of interferon (IFN)-stimulated genes, we have completed a comprehensive characterization of the peripheral T cell compartment in adults with DS with and without autoimmune conditions. CD8+ T cells from adults with DS are depleted of naïve subsets and enriched for differentiated subsets, express higher levels of markers of activation and senescence (e.g., IFN-γ, Granzyme B, PD-1, KLRG1), and overproduce cytokines tied to autoimmunity (e.g., TNF-α). Conventional CD4+ T cells display increased differentiation, polarization toward the Th1 and Th1/17 states, and overproduction of the autoimmunity-related cytokines IL-17A and IL-22. Plasma cytokine analysis confirms elevation of multiple autoimmunity-related cytokines (e.g., TNF-α, IL17A-D, IL-22) in people with DS, independent of diagnosis of autoimmunity. Although Tregs are more abundant in DS, functional assays show that CD8+ and CD4+ effector T cells with T21 are resistant to Treg-mediated suppression, regardless of Treg karyotype. Transcriptome analysis of white blood cells and T cells reveals strong signatures of T cell differentiation and activation that correlate positively with IFN hyperactivity. Finally, mass cytometry analysis of 8 IFN-inducible phosphoepitopes demonstrates that T cell subsets with T21 show elevated levels of basal IFN signaling and hypersensitivity to IFN-α stimulation. Therefore, these results point to T cell dysregulation associated with IFN hyperactivity as a contributor to autoimmunity in DS.


Assuntos
Autoimunidade/genética , Síndrome de Down/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/fisiologia , Linhagem da Célula , Senescência Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Interferon-alfa/farmacologia , Interferon gama/imunologia , Ativação Linfocitária/genética , Masculino , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Adulto Jovem
11.
Trends Genet ; 33(10): 660-662, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28778681

RESUMO

Non-coding (nc)RNAs known as enhancer-derived RNAs (eRNAs) and as long ncRNAs (lncRNAs) have received much attention, but their true functional specialization and evolutionary origins remain obscure. The recent characterization of Bloodlinc, an eRNA derived from a super-enhancer that also functions as a lncRNA, suggests that lncRNAs can evolve from eRNAs.


Assuntos
RNA Longo não Codificante/genética , Elementos Facilitadores Genéticos , Evolução Molecular , Humanos
13.
Genome Res ; 27(10): 1645-1657, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28904012

RESUMO

The tumor suppressor TP53 is the most frequently mutated gene product in human cancer. Close to half of all solid tumors carry inactivating mutations in the TP53 gene, while in the remaining cases, TP53 activity is abrogated by other oncogenic events, such as hyperactivation of its endogenous repressors MDM2 or MDM4. Despite identification of hundreds of genes regulated by this transcription factor, it remains unclear which direct target genes and downstream pathways are essential for the tumor suppressive function of TP53. We set out to address this problem by generating multiple genomic data sets for three different cancer cell lines, allowing the identification of distinct sets of TP53-regulated genes, from early transcriptional targets through to late targets controlled at the translational level. We found that although TP53 elicits vastly divergent signaling cascades across cell lines, it directly activates a core transcriptional program of ∼100 genes with diverse biological functions, regardless of cell type or cellular response to TP53 activation. This core program is associated with high-occupancy TP53 enhancers, high levels of paused RNA polymerases, and accessible chromatin. Interestingly, two different shRNA screens failed to identify a single TP53 target gene required for the anti-proliferative effects of TP53 during pharmacological activation in vitro. Furthermore, bioinformatics analysis of thousands of cancer genomes revealed that none of these core target genes are frequently inactivated in tumors expressing wild-type TP53. These results support the hypothesis that TP53 activates a genetically robust transcriptional program with highly distributed tumor suppressive functions acting in diverse cellular contexts.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética
14.
Mol Cell ; 45(1): 3-5, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22244325

RESUMO

In this issue of Molecular Cell, papers by the Price and Roeder labs reveal how the Gdown1 protein antagonizes the general transcription factor TFIIF during RNAPII initiation and elongation and how the Mediator complex intervenes in this molecular tug-of-war to activate RNAPII.

15.
Alzheimers Dement ; 16(7): 1065-1077, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544310

RESUMO

Improved medical care of individuals with Down syndrome (DS) has led to an increase in life expectancy to over the age of 60 years. In conjunction, there has been an increase in age-related co-occurring conditions including Alzheimer's disease (AD). Understanding the factors that underlie symptom and age of clinical presentation of dementia in people with DS may provide insights into the mechanisms of sporadic and DS-associated AD (DS-AD). In March 2019, the Alzheimer's Association, Global Down Syndrome Foundation and the LuMind IDSC Foundation partnered to convene a workshop to explore the state of the research on the intersection of AD and DS research; to identify research gaps and unmet needs; and to consider how best to advance the field. This article provides a summary of discussions, including noting areas of emerging science and discovery, considerations for future studies, and identifying open gaps in our understanding for future focus.


Assuntos
Doença de Alzheimer/complicações , Síndrome de Down/complicações , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Síndrome de Down/metabolismo , Humanos
16.
Genes Dev ; 26(20): 2325-36, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23019126

RESUMO

ΔNp63α is a member of the p53 family of transcription factors that functions as an oncogene in squamous cell carcinomas (SCCs). Because ΔNp63α and p53 bind virtually identical DNA sequence motifs, it has been proposed that ΔNp63α functions as a dominant-negative inhibitor of p53 to promote proliferation and block apoptosis. However, most SCCs concurrently overexpress ΔNp63α and inactivate p53, suggesting the autonomous action of these oncogenic events. Here we report the discovery of a novel mechanism of transcriptional repression by ΔNp63α that reconciles these observations. We found that although both proteins bind the same genomic sites, they regulate largely nonoverlapping gene sets. Upon activation, p53 binds all enhancers regardless of ΔNp63α status but fails to transactivate genes repressed by ΔNp63α. We found that ΔNp63α associates with the SRCAP chromatin regulatory complex involved in H2A/H2A.Z exchange and mediates H2A.Z deposition at its target loci. Interestingly, knockdown of SRCAP subunits or H2A.Z leads to specific induction of ΔNp63α-repressed genes. We identified SAMD9L as a key anti-proliferative gene repressed by ΔNp63α and H2A.Z whose depletion suffices to reverse the arrest phenotype caused by ΔNp63α knockdown. Collectively, these results illuminate a molecular pathway contributing to the autonomous oncogenic effects of ΔNp63α.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Elementos Facilitadores Genéticos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ligação Proteica , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
17.
Mol Cell ; 40(4): 507-8, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21095581

RESUMO

Pausing of RNA polymerase II (RNAPII) at the 5' end of genes is a widespread phenomenon in metazoans, but the role of this event in gene regulation is poorly understood. Gilchrist et al. (2010) now demonstrate that RNAPII pausing counteracts DNA-influenced nucleosome organization to allow precise gene activation.

18.
Genes Dev ; 24(10): 1022-34, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20478995

RESUMO

The p53 transcriptional program orchestrates alternative responses to stress, including cell cycle arrest and apoptosis, but the mechanism of cell fate choice upon p53 activation is not fully understood. Here we report that PUMA (p53 up-regulated modulator of apoptosis), a key mediator of p53-dependent cell death, is regulated by a noncanonical, gene-specific mechanism. Using chromatin immunoprecipitation assays, we found that the first half of the PUMA locus (approximately 6 kb) is constitutively occupied by RNA polymerase II and general transcription factors regardless of p53 activity. Using various RNA analyses, we found that this region is constitutively transcribed to generate a long unprocessed RNA with no known coding capacity. This permissive intragenic domain is constrained by sharp chromatin boundaries, as illustrated by histone marks of active transcription (histone H3 Lys9 trimethylation [H3K4me3] and H3K9 acetylation [H3K9Ac]) that precipitously transition into repressive marks (H3K9me3). Interestingly, the insulator protein CTCF (CCCTC-binding factor) and the Cohesin complex occupy these intragenic chromatin boundaries. CTCF knockdown leads to increased basal expression of PUMA concomitant with a reduction in chromatin boundary signatures. Importantly, derepression of PUMA upon CTCF depletion occurs without p53 activation or activation of other p53 target genes. Therefore, CTCF plays a pivotal role in dampening the p53 apoptotic response by acting as a gene-specific repressor.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Apoptose/genética , Fator de Ligação a CCCTC , Cromatina/genética , Células HCT116 , Humanos , Fatores de Alongamento de Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Coesinas
19.
Genes Dev ; 24(2): 111-4, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20080948

RESUMO

p53 is a pleiotropic transcription factor driving a flexible transcriptional program that mediates disparate cellular responses to stress, including cell cycle arrest and apoptosis. The mechanisms by which p53 differentially regulates its diverse target genes remain poorly understood. In this issue of Genes & Development, Morachis and colleagues (pp. 135-147) demonstrate the critical role of core promoter elements at p53 target loci, in that they dictate differential RNA polymerase II recruitment and activity in a p53-autonomous fashion.


Assuntos
Regulação da Expressão Gênica , Genes p53/genética , Regiões Promotoras Genéticas/genética , Fator de Ligação a CCAAT/metabolismo , Evolução Molecular , Humanos
20.
Genes Dev ; 23(11): 1364-77, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19487575

RESUMO

We reported previously that when cells are arrested in S phase, a subset of p53 target genes fails to be strongly induced despite the presence of high levels of p53. When DNA replication is inhibited, reduced p21 mRNA accumulation is correlated with a marked reduction in transcription elongation. Here we show that ablation of the protein kinase Chk1 rescues the p21 transcription elongation defect when cells are blocked in S phase, as measured by increases in both p21 mRNA levels and the presence of the elongating form of RNA polymerase II (RNAPII) toward the 3' end of the p21 gene. Recruitment of specific elongation and 3' processing factors (DSIF, CstF-64, and CPSF-100) is also restored. While additional components of the RNAPII transcriptional machinery, such as TFIIB and CDK7, are recruited more extensively to the p21 locus after DNA damage than after replication stress, their recruitment is not enhanced by ablation of Chk1. Significantly, ablating Chk2, a kinase closely related in substrate specificity to Chk1, does not rescue p21 mRNA levels during S-phase arrest. Thus, Chk1 has a direct and selective role in the elongation block to p21 observed during S-phase arrest. These findings demonstrate for the first time a link between the replication checkpoint mediated by ATR/Chk1 and the transcription elongation/3' processing machinery.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Fase S/fisiologia , Transdução de Sinais/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Cafeína/farmacologia , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Replicação do DNA/efeitos dos fármacos , Daunorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Hidroxiureia/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA