Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2409269121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870055

RESUMO

Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Progressão da Doença , Neoplasias Pulmonares , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
2.
Front Cell Dev Biol ; 11: 1281730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234684

RESUMO

p53 is a hallmark tumor suppressor due in part to its role in cell cycle progression, DNA damage repair, and cellular apoptosis; its protein activity interrelates with the Sirtuin family of proteins, major regulators of the cellular response to metabolic, oxidative, and genotoxic stress. In the recent years, mammalian Sirtuin 7 (SIRT7) has emerged as a pivotal regulator of p53, fine-tuning its activity in a context dependent manner. SIRT7 is frequently overexpressed in human cancer, yet its precise role in tumorigenesis and whether it involves p53 regulation is insufficiently understood. Depletion of SIRT7 in mice results in impaired embryo development and premature aging. While p53 activity has been suggested to contribute to tissue specific dysfunction in adult Sirt7 -/- mice, whether this also applies during development is currently unknown. By generating SIRT7 and p53 double-knockout mice, here we show that the demise of SIRT7-deficient embryos is not the result of p53 activity. Notably, although SIRT7 is commonly considered an oncogene, SIRT7 haploinsufficiency increases tumorigenesis in p53 knockout mice. Remarkably, in specific human tumors harboring p53 mutation, we identified that SIRT7 low expression correlates with poor patient prognosis. Transcriptomic analysis unveils a previously unrecognized interplay between SIRT7 and p53 in epithelial-to-mesenchymal transition (EMT) and extracellular matrix regulation with major implications for our understanding of embryonic development and tumor progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA