Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(10): 639, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354107

RESUMO

A compact organic electrochemical transistors (OECT) sensor enriched with carbon quantum dots (CQDs) was developed to enhance the transconductance of an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film, enabling the precise and selective detection of dopamine (DA). Accurate monitoring of DA levels is critical for diagnosing and managing related conditions. Incorporating CQDs, we have achieved a remarkable up to threefold increase in current at the DA detection peak in differential pulse voltammetry. This enhancement showcases superior selectivity even in the presence of high concentrations of interferents like uric acid and ascorbic acid. This material significantly boosts the sensitivity of OECTs for DA detection, delivering an amperometric response with a detection limit of 55 nM and a broader detection range (1 - 500 µM). Our results underscore the potential of low-dimensional carbonaceous materials in creating cost-effective, high-sensitivity devices for detecting DA and other biomolecules. This breakthrough sets the stage for the development of next-generation biosensors for point-of-care diagnostics.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Carbono , Dopamina , Técnicas Eletroquímicas , Limite de Detecção , Polímeros , Pontos Quânticos , Pontos Quânticos/química , Dopamina/análise , Dopamina/sangue , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros/química , Transistores Eletrônicos , Técnicas Biossensoriais/métodos , Humanos
2.
Macromol Rapid Commun ; 44(15): e2300132, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37191109

RESUMO

Six acrylamide resins, derived from l-phenylalanine and l-leucine, are designed for application in digital light processing (DLP) printers to obtain biodegradable thermoset polymers. The acrylamide copolymers are prepared under light irradiation at 405 nm and thermal post-curing processes. Low molecular weight poly(ethylene glycol)diacrylate (PEGDA) and N,N-dimethylacrylamide (DMAM), both liquid resins, are used as co-monomers and diluents for the amino acid-derived acrylamide solubilization. The presence of two phenylalanine units and two ester groups in the acrylamide monomer accuses a fast degradation rate in hydrolytic medium in 90 days. The residual products leached in the aqueous media prove to be non-cytotoxic, when 3D-printed samples are cultured with osteoblast cells (MG63), which represents an advantage for the safe disposal of printer waste materials. The scaled-up pieces derived from l-phenylalanine and diethylene glycol, as amino acid-derived acrylamide (named compound C), PEGDA and DMAM, present high dimensional stability after DLP printing of complex structures used as testing samples. Layers of 50 µm of thickness are well cohesive having isotropic behavior, as demonstrated with tensile-strain measurements performed in X-Y-Z (plane) directions. The compound C, which contains phenylalanine amino acid, reveals a promising potential to replace non-biodegradable acrylate polymers used in prototyping systems.


Assuntos
Acrilamida , Aminoácidos , Impressão Tridimensional , Polímeros , Fenilalanina
3.
Sci Technol Adv Mater ; 24(1): 2242242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638280

RESUMO

Osteoporotic-related fractures are among the leading causes of chronic disease morbidity in Europe and in the US. While a significant percentage of fractures can be repaired naturally, in delayed-union and non-union fractures surgical intervention is necessary for proper bone regeneration. Given the current lack of optimized clinical techniques to adequately address this issue, bone tissue engineering (BTE) strategies focusing on the development of scaffolds for temporarily replacing damaged bone and supporting its regeneration process have been gaining interest. The piezoelectric properties of bone, which have an important role in tissue homeostasis and regeneration, have been frequently neglected in the design of BTE scaffolds. Therefore, in this study, we developed novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) nanofibers via electrospinning capable of replicating the tissue's fibrous extracellular matrix (ECM) composition and native piezoelectric properties. The developed PVDF-TrFE/HAp nanofibers had biomimetic collagen fibril-like diameters, as well as enhanced piezoelectric and surface properties, which translated into a better capacity to assist the mineralization process and cell proliferation. The biological cues provided by the HAp nanoparticles enhanced the osteogenic differentiation of seeded human mesenchymal stem/stromal cells (MSCs) as observed by the increased ALP activity, cell-secreted calcium deposition and osteogenic gene expression levels observed for the HAp-containing fibers. Overall, our findings describe the potential of combining PVDF-TrFE and HAp for developing electroactive and osteoinductive nanofibers capable of supporting bone tissue regeneration.

4.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884972

RESUMO

In the present study, a composite made of conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), and a biodegradable hydrogel of poly(aspartic acid) (PASP) were electrochemically interpenetrated with poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHMeDOT) to prepare a new interpenetrated polymer network (IPN). Different cross-linker and PEDOT MPs contents, as well as different electropolymerization times, were studied to optimize the structural and electrochemical properties. The properties of the new material, being electrically conductive, biocompatible, bioactive, and biodegradable, make it suitable for possible uses in biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Condutividade Elétrica , Eletroquímica , Hidrogéis/química , Peptídeos/química , Polímeros/química
5.
Soft Matter ; 15(38): 7695-7703, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31502620

RESUMO

In spite of p-doped conducting polymers having been widely studied in the last decades and many applications having been developed, studies based on n-doped conducting polymers are extremely scarce. This fact is even more evident when it comes to conducting polymers n-doped with polycations, even though polyanions, such as poly(styrenesulfonate), are often used to obtain p-doped conducting polymers. In this work poly(pyridinium-1,4-diyliminocarbonyl-1,4-phenylene-methylene chloride), abbreviated as P(Py-1,4-P), has been used to prepare n-doped poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes by applying a reduction potential to a de-doped PEDOT film in a P(Py-1,4-P) water solution. The utilization of this cationic polyelectrolyte as an n-dopant agent results in drastic superficial changes, as is observed by comparing the morphology, topography and wettability of p-doped, de-doped and n-doped PEDOT. Cytotoxicity, cell adhesion and cell proliferation assays, which have been conducted using epithelial and fibroblast cell lines, show that the amount of P(Py-1,4-P) in the re-doped PEDOT films is below that required to observe a cytotoxic harmful response and that n-doped PEDOT:P(Py-1,4-P) films are biocompatible. The non-specific bacteriostatic properties of n-doped PEDOT:P(Py-1,4-P) films have been demonstrated against E. coli and S. aureus bacteria (Gram-negative and Gram-positive, respectively) using bacterial growth curves and adhesion assays. Although the bacteriostatic effect is in part due to the conducting polymer, as is proved by results for p-doped and de-doped PEDOT, the incorporation of P(Py-1,4-P) through the re-doping process greatly enhances this antimicrobial behaviour. Thus, only a small concentration of this cationic polyelectrolyte (∼0.1 mM) is needed to inhibit bacterial growth.

6.
Soft Matter ; 14(30): 6374-6385, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30028464

RESUMO

Three isomeric ionene polymers containing 1,4-diazabicyclo[2.2.2]octane (DABCO) and N,N'-(x-phenylene)dibenzamide (x = ortho-/meta-/para-) linkages have been used as dopant agents to produce n-doped poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes by reducing already dedoped conducting polymer (CP) films. This work focuses on the influence of the ionene topology on both the properties of n-doped PEDOT:ionene electrodes and the success of the in situ thermal gelation of the ionene inside the CP matrix. The highest doping level is reached for the para-isomeric ionene-containing electrode, even though the content of ortho- and meta-topomers in the corresponding n-doped PEDOT:ionene electrodes is greater. Thus, many of the incorporated ionene units are not directly interacting with CP chains and, therefore, they do not play an active role as n-dopant agents but they are crucial for the in situ formation of the ionene hydrogels. The effect of the ionene topology is practically non-existent on properties such as the specific capacitance and wettability of PEDOT:ionene films, and it is small but non-negligible on the electrochemical and thermal stability. In contrast, the surface morphology, topography, and distribution of dopant molecules significantly depend on the ionene topology. In situ thermal gelation was successful in PEDOT films n-doped with the ortho- and para-topomers, even though this assembly process was much faster for the former than for the latter. The gelation considerably improved the mechanical response of the electropolymerized PEDOT film, which was practically non-existent before it. Molecular dynamics simulations prove that the strength and abundance of PEDOTionene specific interactions (i.e. π-π stacking, N-HS hydrogen bonds and both N+O and N+S interactions) are higher for the meta-isomeric ionene, for which the in situ gelation was not achieved, than for the ortho- and para-ones.

7.
Phys Chem Chem Phys ; 20(15): 9855-9864, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29611560

RESUMO

We report the reduction of poly(3,4-ethylenedioxythiophene) (PEDOT) films with a cationic 1,4-diazabicyclo[2.2.2]octane-based ionene bearing N,N'-(meta-phenylene)dibenzamide linkages (mPI). Our main goal is to obtain n-doped PEDOT using a polymeric dopant agent rather than small conventional tetramethylammonium (TMA), as is usual. This has been achieved using a three-step process, which has been individually optimized: (1) preparation of p-doped (oxidized) PEDOT at a constant potential of +1.40 V in acetonitrile with LiClO4 as the electrolyte; (2) dedoping of oxidized PEDOT using a fixed potential of -1.30 V in water; and (3) redoping of dedoped PEDOT applying a reduction potential of -1.10 V in water with mPI. The resulting films display the globular appearance typically observed for PEDOT, with mPI being structured in separated phases forming nanospheres or ultrathin sheets. This organization, which has been supported by atomistic molecular dynamics simulations, resembles the nanosegregated phase distribution observed for PEDOT p-doped with poly(styrenesulfonate). Furthermore, the doping level achieved using mPI as the doping agent is comparable to that achieved using TMA, even though ionene provides distinctive properties to the conducting polymer. For example, films redoped with mPI exhibit much more hydrophilicity than the oxidized ones, whereas films redoped with TMA are hydrophobic. Similarly, films redoped with mPI exhibit the highest thermal stability, while those redoped with TMA show thermal stability that is intermediate between those of the latter and the dedoped PEDOT. Overall, the incorporation of an mPI polycation as the n-dopant into PEDOT has important advantages for modulating the properties of this emblematic conducting polymer.

8.
Soft Matter ; 12(24): 5475-88, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27220532

RESUMO

Homopeptides with 2, 3 and 4 phenylalanine (Phe) residues and capped with fluorenylmethoxycarbonyl and fluorenylmethyl esters at the N-terminus and C-terminus, respectively, have been synthesized to examine their self-assembly capabilities. Depending on the conditions, the di- and triphenylalanine derivatives self-organize into a wide variety of stable polymorphic structures, which have been characterized: stacked braids, doughnut-like shapes, bundled arrays of nanotubes, corkscrew-like shapes and spherulitic microstructures. These highly aromatic Phe-based peptides also form incipient branched dendritic microstructures, even though they are highly unstable, making their manipulation very difficult. Conversely, the tetraphenylalanine derivative spontaneously self-assembles into stable dendritic microarchitectures made of branches growing from nucleated primary frameworks. The fractal dimension of these microstructures is ∼1.70, which provides evidence for self-similarity and two-dimensional diffusion controlled growth. DFT calculations at the M06L/6-31G(d) level have been carried out on model ß-sheets since this is the most elementary building block of Phe-based peptide polymorphs. The results indicate that the antiparallel ß-sheet is more stable than the parallel one, with the difference between them growing with the number of Phe residues. Thus, the cooperative effects associated with the antiparallel disposition become more favorable when the number of Phe residues increases from 2 to 4, while those of the parallel disposition remained practically constant.


Assuntos
Peptídeos/química , Fenilalanina/química , Nanotubos , Conformação Proteica
9.
Chemistry ; 21(47): 16895-905, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26419936

RESUMO

Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists of three FFFF molecules defining a ring through head-to-tail NH3(+)⋅⋅⋅(-)OOC interactions, which in turn stack to produce deformed channels with internal diameters between 12 and 16 Å. Depending on the experimental conditions used for the peptide incubation, N-fluorenylmethoxycarbonyl (Fmoc) protected FFFF self-assembles into a variety of polymorphs: ultra-thin nanoplates, fibrils, and star-like submicrometric aggregates. DFT calculations indicate that Fmoc-FFFF prefers a parallel rather than an antiparallel ß-sheet assembly. Finally, coexisting multiple assemblies (up to three) were observed for Fmoc-FFFF-OBzl (OBzl = benzyl ester), which incorporates aromatic protecting groups at the two peptide terminals. This unusual and noticeable feature is attributed to the fact that the assemblies obtained by combining the Fmoc and OBzl groups contained in the peptide are isoenergetic.


Assuntos
Fluorenos/química , Nanotubos/química , Peptídeos/química , Peptídeos/síntese química , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/síntese química , Dipeptídeos , Simulação de Dinâmica Molecular
10.
Carbohydr Polym ; 337: 122170, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710559

RESUMO

To improve the features of alginate-based hydrogels in physiological conditions, Ca2+-crosslinked semi-interpenetrated hydrogels formed by poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid and alginate (PEDOT/Alg) were subjected to a treatment with glyoxal to form a dual ionic/covalent network. The covalent network density was systematically varied by considering different glyoxalization times (tG). The content of Ca2+ was significantly higher for the untreated hydrogel than for the glyoxalized ones, while the properties of the hydrogels were found to largely depend on tG. The porosity and swelling capacity decreased with increasing tG, while the stiffness and electrical conductance retention capacity increased with tG. The potentiodynamic response of the hydrogels notably depended on the amount of conformational restraints introduced by the glyoxal, which is a very short crosslinker. Thus, the re-accommodation of the polymer chains during the cyclic potential scans became more difficult with increasing number of covalent crosslinks. This information was used to improve the performance of untreated PEDOT/Alg as electrochemical sensor of hydrogen peroxide by simply applying a tG of 5 min. Overall, the control of the properties of glyoxalized hydrogels through tG is very advantageous and can be used as an on-demand strategy to improve the performance of such materials depending on the application.

11.
Int J Biol Macromol ; : 136337, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39383916

RESUMO

Cholesterol is a fundamental lipid prevalent in eukaryotic cell membranes and circulating in the bloodstream bound to lipoproteins. It serves as a precursor to steroid hormones and is regarded as a biomarker for cardiovascular disease and other metabolic disorders. Numerous cholesterol detection methods predominantly rely on enzymes, which suffer from instability, leading to non-cost-effective biosensors with low sensitivity and poor reusability. Therefore, monitoring cholesterol levels with a feasible, rapid, and stable biosensor is critical for diagnosing and treating various disorders. This study aimed to develop a non-enzymatic cholesterol biosensor based on a selected cholesterol recognition peptide as the detection element. Screen-printed carbon electrodes (SPEs) modified with biocompatible poly-L-lactic acid (PLLA) porous nanomembranes (NMs) were utilized as support for the covalent immobilization of the peptide. Data obtained from electrochemical impedance spectroscopy (EIS) demonstrated the peptide's effective binding affinity towards cholesterol, paving the way for its implementation. The determination of cholesterol with the proposed biosensor exhibited a low limit of detection of 6.31 µM with linear responses ranging from 2-15 µM and 20-40 µM. These findings present an alternative method for cholesterol sensing by integrating novel peptides as biorecognition motifs with biocompatible polymeric materials, potentially useful as biocompatible and future point-of-care sensors.

12.
ACS Appl Bio Mater ; 6(5): 1720-1741, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37115912

RESUMO

Biosensors are increasingly taking a more active role in health science. The current needs for the constant monitoring of biomedical signals, as well as the growing spending on public health, make it necessary to search for materials with a combination of properties such as biocompatibility, electroactivity, resorption, and high selectivity to certain bioanalytes. Conducting polymer hydrogels seem to be a very promising materials, since they present many of the necessary properties to be used as biosensors. Furthermore, their properties can be shaped and enhanced by designing conductive polymer hydrogel-based composites with more specific functionalities depending on the end application. This work will review the recent state of the art of different biological hydrogels for biosensor applications, discuss the properties of the different components alone and in combination, and reveal their high potential as candidate materials in the fabrication of all-organic diagnostic, wearable, and implantable sensor devices.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Polímeros , Hidrogéis , Próteses e Implantes
13.
Biomed Pharmacother ; 168: 115667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37826940

RESUMO

Soluble epoxide hydrolase (sEH) is a drug target with the potential for therapeutic utility in the areas of inflammation, neurodegenerative disease, chronic pain, and diabetes, among others. Proteolysis-targeting chimeras (PROTACs) molecules offer new opportunities for targeting sEH, due to its capacity to induce its degradation. Here, we describe that the new ALT-PG2, a PROTAC that degrades sEH protein in the human hepatic Huh-7 cell line, in isolated mouse primary hepatocytes, and in the liver of mice. Remarkably, sEH degradation caused by ALT-PG2 was accompanied by an increase in the phosphorylated levels of AMP-activated protein kinase (AMPK), while phosphorylated extracellular-signal-regulated kinase 1/2 (ERK1/2) was reduced. Consistent with the key role of these kinases on endoplasmic reticulum (ER) stress, ALT-PG2 attenuated the levels of ER stress and inflammatory markers. Overall, the findings of this study indicate that targeting sEH with degraders is a promising pharmacological strategy to promote AMPK activation and to reduce ER stress and inflammation.


Assuntos
Epóxido Hidrolases , Doenças Neurodegenerativas , Humanos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Inflamação , Estresse do Retículo Endoplasmático/fisiologia
14.
Phys Chem Chem Phys ; 14(28): 10050-62, 2012 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-22699749

RESUMO

The influence of the halogen atom on the intrinsic properties of poly(3-halidethiophene)s has been investigated using experimental and theoretical methodologies. Specifically, the electrochemical, electrical, electronic and morphological properties of poly(3-bromothiophene) have been determined and compared with those recently reported for poly(3-chlorothiophene) [Aradilla et al., Polym. Chem., 2012, 3, 436.]. The electrochemical stability and porosity are smaller for poly(3-bromothiophene) than for poly(3-chlorothiophene) while the π-π* lowest transition energy is higher for the former than for the latter. Moreover, quantum mechanical calculations on model oligomers have evidenced that the conformational properties of poly(3-halidethiophene)s, where the halogen is fluorine, chloride or bromine, are dominated by steric interactions and, therefore, are significantly influenced by the size of the halogen atoms. Both the ionization potential and the π-π* lowest transition energy have been predicted to increase slightly when the π-donor character of the halogen atom decreases, in agreement with experimental observations.


Assuntos
Polímeros/química , Tiofenos/química , Técnicas Eletroquímicas , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície , Tiofenos/síntese química
15.
J Mater Chem B ; 8(5): 1049-1059, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31939983

RESUMO

Herein, a versatile bilayer system, composed by a polypropylene (PP) mesh and a covalently bonded poly(N-isopropylacrylamide) (PNIPAAm) hydrogel, is reported. The cell adhesion mechanism was successfully modulated by controlling the architecture of the hydrogel in terms of duration of PNIPAAm grafting time, crosslinker content, and temperature of material exposure in PBS solutions (below and above the LCST of PNIPAAm). The best in vitro results with fibroblast (COS-1) and epithelial (MCF-7) cells was obtained with a mesh modified with a porous iPP-g-PNIPAAm bilayer system, prepared via PNIPAAm grafting for 2 h at the lowest N,N'-methylene bis(acrylamide) (MBA) concentration (1 mM). Under these conditions, the detachment of the fibroblast-like cells was 50% lower than that of the control, after 7 days of cell incubation, which represents a high de-adhesion of cells in a short period. Moreover, the whole system showed excellent stability in dry or wet media, proving that the thermosensitive hydrogel was well adhered to the polymer surface, after PP fibre activation by cold plasma. This study provides new insights on the development of anti-adherent meshes for abdominal hernia repair.


Assuntos
Hérnia Abdominal/tratamento farmacológico , Hérnia Abdominal/cirurgia , Polipropilenos/farmacologia , Telas Cirúrgicas , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Teste de Materiais , Tamanho da Partícula , Polipropilenos/síntese química , Polipropilenos/química , Propriedades de Superfície
16.
Macromol Biosci ; 20(7): e2000074, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32449596

RESUMO

Simultaneous drug release and monitoring using a single polymeric platform represents a significant advance in the utilization of biomaterials for therapeutic use. Tracking drug release by real-time electrochemical detection using the same platform is a simple way to guide the dosage of the drug, improve the desired therapeutic effect, and reduce the adverse side effects. The platform developed in this work takes advantage of the flexibility and loading capacity of hydrogels, the mechanical strength of microfibers, and the capacity of conducting polymers to detect the redox properties of drugs. The engineered platform is prepared by assembling two spin-coated layers of poly-γ-glutamic acid hydrogel, loaded with poly(3,4-ethylenedioxythiophene) (PEDOT) microparticles, and separated by a electrospun layer of poly-ε-caprolactone microfibers. Loaded PEDOT microparticles are used as reaction nuclei for the polymerization of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHMeDOT), that semi-interpenetrate the whole three layered system while forming a dense network of electrical conduction paths. After demonstrating its properties, the platform is loaded with levofloxacin and its release monitored externally by UV-vis spectroscopy and in situ by using the PHMeDOT network. In situ real-time electrochemical monitoring of the drug release from the engineered platform holds great promise for the development of multi-functional devices for advanced biomedical applications.


Assuntos
Monitoramento de Medicamentos , Eletricidade , Hidrogéis/química , Bactérias/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Liberação Controlada de Fármacos , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Poliésteres/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria
17.
Macromol Biosci ; 19(8): e1900130, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31222941

RESUMO

Ambroxol is a pharmacological chaperone (PC) for Gaucher disease that increases lysosomal activity of misfolded ß-glucocerebrosidase (GCase) while displaying a safe toxicological profile. In this work, different poly(ε-caprolactone) (PCL)-based systems are developed to regulate the sustained release of small polar drugs in physiological environments. For this purpose, ambroxol is selected as test case since the encapsulation and release of PCs using polymeric scaffolds have not been explored yet. More specifically, ambroxol is successfully loaded in electrospun PCL microfibers, which are subsequently coated with additional PCL layers using dip-coating or spin-coating. The time needed to achieve 80% release of loaded ambroxol increases from ≈15 min for uncoated fibrous scaffolds to 3 days and 1 week for dip-coated and spin-coated systems, respectively. Furthermore, it is proven that the released drug maintains its bioactivity, protecting GCase against induced thermal denaturation.


Assuntos
Ambroxol/química , Preparações de Ação Retardada/química , Glucosilceramidase/química , Poliésteres/química , Substâncias Protetoras/química , Ambroxol/farmacologia , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Técnicas Eletroquímicas , Temperatura Alta , Cinética , Substâncias Protetoras/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica
18.
Polymers (Basel) ; 11(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731560

RESUMO

Two azo dyes, acid red 1 (AR1) and acid red 18 (AR18), were used alone or in combination with sodium dodecyl sulfate (SDS) for the electropolymerization of a pyrrole monomer. Polypyrrole (PPy) showed higher redox capacity when SDS and AR18 were used simultaneously as dopant agents (PPy/AR18-SDS) than when the conducting polymer was produced in the presence of SDS, AR18, AR1, or an AR1/SDS mixture. Moreover, PPy/AR18-SDS is a self-stabilizing material that exhibits increasing electrochemical activity with the number of oxidation-reduction cycles. A mechanism supported by scanning electron microscopy and X-ray diffraction structural observations was proposed to explain the synergy between the SDS surfactant and the AR18 dye. On the other hand, the Bordeaux red color of PPy/AR18-SDS, which exhibits an optical band gap of 1.9 eV, rapidly changed to orange-yellow and blue colors when films were reduced and oxidized, respectively, by applying linear or step potential ramps. Overall, the results indicate that the synergistic utilization of AR18 and SDS as dopant agents in the same polymerization reaction is a very successful and advantageous strategy for the preparation of PPy films with cutting-edge electrochemical and electrochromic properties.

19.
J Phys Chem A ; 112(42): 10650-6, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-18821743

RESUMO

Formation of intra- and intermolecular hydrogen bonds in 2-thiophen-3-ylmalonic acid, the precursor of a polythiophene derivative bearing two carboxylic acid groups in the side chain, have been examined by Fourier transform infrared (FTIR) spectroscopy and ab initio quantum mechanical calculations. Interactions found in the FTIR spectra recorded for the melted and solid states are in good agreement with results provided by MP2/6-31+G(d,p) calculations on monomers and dimers, respectively. Specifically, inter- and intramolecular hydrogen bonds were detected in the solid and melted states, respectively. Calculations on dimers stabilized by intermolecular hydrogen bonds exclusively and by both intra- and intermolecular interactions indicated that the former structures are significantly more stable than the latter ones, which is fully consistent with experimental observations. On the other hand, intramolecular interactions in isolated monomers are favored in the melted state, which is dominated by a thermally driven entropic process.


Assuntos
Malonatos/química , Termodinâmica , Tiofenos/química , Simulação por Computador , Ligação de Hidrogênio , Modelos Químicos , Conformação Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
20.
Carbohydr Polym ; 200: 456-467, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30177187

RESUMO

Different carboxymethyl cellulose sodium salt (NaCMC)-based pastes and hydrogels, both containing a salt as supporting electrolyte, have been prepared and characterized as potential solid state electrolyte (SSE) for solid electrochemical supercapacitors (ESCs).The characteristics of the NaCMC-based SSEs have been optimized by examining the influence of five different factors in the capacitive response of poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes: i) the chemical nature of the salt used as supporting electrolyte; ii) the concentration of such salt; iii) the concentration of cellulose used to prepare the paste; iv) the concentration of citric acid employed during NaCMC cross-linking; and v) the treatment applied to recover the supporting electrolyte after washing the hydrogel. The specific capacitance of the device prepared using the optimized hydrogel as SSE is 81.5 and 76.8 F/g by means of cyclic voltammetry and galvanostatic charge/discharge, respectively, these values decreasing to 60.7 and 75.5 F/g when the SSE is the paste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA