RESUMO
We are 52 Black scientists. Here, we establish the context of Juneteenth in STEMM and discuss the barriers Black scientists face, the struggles they endure, and the lack of recognition they receive. We review racism's history in science and provide institutional-level solutions to reduce the burdens on Black scientists.
Assuntos
População Negra , HumanosRESUMO
Virtual interviewing has become ubiquitous with the academic job market. Here, we highlight the best practices for candidates and departments to consider when using virtual interviewing. We propose how virtual interviews can be leveraged and adapted for hybrid academic job searches combining virtual and in-person activities in a post-pandemic world.
Assuntos
Emprego , Entrevistas como Assunto , Universidades , COVID-19/epidemiologia , Escolha da Profissão , Docentes , HumanosRESUMO
In a recent study in Nature, Haakonsen et al.1 identify the SIFI complex as a stress response silencer via its E3 ligase activity to target unimported mitochondrial proteins and stress response components for degradation via the proteasome.
Assuntos
Mitocôndrias , Complexo de Endopeptidases do Proteassoma , Sobrevivência Celular , Mitocôndrias/genética , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Mitochondrial homeostasis depends on mitophagy, the programmed degradation of mitochondria. Only a few proteins are known to participate in mitophagy. Here we develop a multidimensional CRISPR-Cas9 genetic screen, using multiple mitophagy reporter systems and pro-mitophagy triggers, and identify numerous components of parkin-dependent mitophagy1. Unexpectedly, we find that the adenine nucleotide translocator (ANT) complex is required for mitophagy in several cell types. Whereas pharmacological inhibition of ANT-mediated ADP/ATP exchange promotes mitophagy, genetic ablation of ANT paradoxically suppresses mitophagy. Notably, ANT promotes mitophagy independently of its nucleotide translocase catalytic activity. Instead, the ANT complex is required for inhibition of the presequence translocase TIM23, which leads to stabilization of PINK1, in response to bioenergetic collapse. ANT modulates TIM23 indirectly via interaction with TIM44, which regulates peptide import through TIM232. Mice that lack ANT1 show blunted mitophagy and consequent profound accumulation of aberrant mitochondria. Disease-causing human mutations in ANT1 abrogate binding to TIM44 and TIM23 and inhibit mitophagy. Together, our findings show that ANT is an essential and fundamental mediator of mitophagy in health and disease.
Assuntos
Mitofagia , Animais , Linhagem Celular , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Nucleotídeos/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismoRESUMO
Synaptotagmin 9 (SYT9) is a tandem C2 domain Ca2+ sensor for exocytosis in neuroendocrine cells; its function in neurons remains unclear. Here, we show that, in mixed-sex cultures, SYT9 does not trigger rapid synaptic vesicle exocytosis in mouse cortical, hippocampal, or striatal neurons, unless it is massively overexpressed. In striatal neurons, loss of SYT9 reduced the frequency of spontaneous neurotransmitter release events (minis). We delved into the underlying mechanism and discovered that SYT9 was localized to dense-core vesicles that contain substance P (SP). Loss of SYT9 impaired SP release, causing the observed decrease in mini frequency. This model is further supported by loss of function mutants. Namely, Ca2+ binding to the C2A domain of SYT9 triggered membrane fusion in vitro, and mutations that disrupted this activity abolished the ability of SYT9 to regulate both SP release and mini frequency. We conclude that SYT9 indirectly regulates synaptic transmission in striatal neurons by controlling SP release.SIGNIFICANCE STATEMENT Synaptotagmin 9 (SYT9) has been described as a Ca2+ sensor for dense-core vesicle (DCV) exocytosis in neuroendocrine cells, but its role in neurons remains unclear, despite widespread expression in the brain. This article examines the role of SYT9 in synaptic transmission across cultured cortical, hippocampal, and striatal neuronal preparations. We found that SYT9 regulates spontaneous neurotransmitter release in striatal neurons by serving as a Ca2+ sensor for the release of the neuromodulator substance P from DCVs. This demonstrates a novel role for SYT9 in neurons and uncovers a new field of study into neuromodulation by SYT9, a protein that is widely expressed in the brain.
Assuntos
Substância P , Vesículas Sinápticas , Animais , Camundongos , Sinaptotagminas/metabolismo , Substância P/metabolismo , Vesículas Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Exocitose , Neurotransmissores/metabolismo , Sinaptotagmina I/metabolismo , Cálcio/metabolismoRESUMO
TANK-binding kinase 1 (TBK1) is a multifunctional kinase with an essential role in mitophagy, the selective clearance of damaged mitochondria. More than 90 distinct mutations in TBK1 are linked to amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia, including missense mutations that disrupt the abilities of TBK1 to dimerize, associate with the mitophagy receptor optineurin (OPTN), autoactivate, or catalyze phosphorylation. We investigated how ALS-associated mutations in TBK1 affect Parkin-dependent mitophagy using imaging to dissect the molecular mechanisms involved in clearing damaged mitochondria. Some mutations cause severe dysregulation of the pathway, while others induce limited disruption. Mutations that abolish either TBK1 dimerization or kinase activity were insufficient to fully inhibit mitophagy, while mutations that reduced both dimerization and kinase activity were more disruptive. Ultimately, both TBK1 recruitment and OPTN phosphorylation at S177 are necessary for engulfment of damaged mitochondra by autophagosomal membranes. Surprisingly, we find that ULK1 activity contributes to the phosphorylation of OPTN in the presence of either wild-type or kinase-inactive TBK1. In primary neurons, TBK1 mutants induce mitochondrial stress under basal conditions; network stress is exacerbated with further mitochondrial insult. Our study further refines the model for TBK1 function in mitophagy, demonstrating that some ALS-linked mutations likely contribute to disease pathogenesis by inducing mitochondrial stress or inhibiting mitophagic flux. Other TBK1 mutations exhibited much less impact on mitophagy in our assays, suggesting that cell-type-specific effects, cumulative damage, or alternative TBK1-dependent pathways such as innate immunity and inflammation also factor into the development of ALS in affected individuals.
Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Mitofagia/genética , Mutação de Sentido Incorreto/genética , Proteínas Serina-Treonina Quinases/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Predisposição Genética para Doença , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mutantes/metabolismo , Estresse Oxidativo , Fosforilação , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/químicaRESUMO
With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.
Assuntos
Mitocôndrias , Miocárdio , Humanos , Masculino , Camundongos , Animais , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Coração , Envelhecimento , Transdução de Sinais , Proteínas Mitocondriais/metabolismoRESUMO
Amyotrophic lateral sclerosis (ALS) is a debilitating and incurable disease involving the loss of motor neurons and subsequent muscle atrophy. Genetic studies have implicated deficits in autophagy and/or mitophagy in the onset of the disease. Here we review recent progress in our understanding of the pathways for autophagy and mitophagy in neurons, and how these pathways may be affected by mutations in genes including DCTN1, OPTN, TBK1, VCP, and C9ORF72. We also discuss the implications of modulating autophagy in ALS, highlighting both the potential of the approach and the concerns raised by targeting this pathway as a therapeutic strategy in neurodegenerative disease.
Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Autofagia/fisiologia , Mitofagia/fisiologia , Animais , Humanos , Neurônios/fisiologiaRESUMO
The Ca(2+) sensor synaptotagmin-1 (syt-1) regulates neurotransmitter release by interacting with anionic phospholipids. Here we test the idea that the intrinsic kinetics of syt-membrane interactions determine, in part, the time course of synaptic transmission. To tune the kinetics of this interaction, we grafted structural elements from the slowest isoform, syt-7, onto the fastest isoform, syt-1, resulting in a chimera with intermediate kinetic properties. Moreover, the chimera coupled a physiologically irrelevant metal, Sr(2+), to membrane fusion in vitro. When substituted for syt-1 in mouse hippocampal neurons, the chimera slowed the kinetics of synaptic transmission. Neurons expressing the chimera also evinced rapid and efficient Sr(2+) triggered release, in contrast to the weak response of neurons expressing syt-1. These findings reveal presynaptic sensor-membrane interactions as a major factor regulating the speed of the release machinery. Finally, the chimera failed to clamp the elevated spontaneous fusion rate exhibited by syt-1 KO neurons, indicating that the metal binding loops of syt-1 regulate the two modes of release by distinct mechanisms. SIGNIFICANCE STATEMENT: In calcium, synaptotagmin-1 triggers neurotransmitter release by interacting with membranes. Here, we demonstrate that intrinsic properties of this interaction control the time course of synaptic transmission. We engineered a "chimera" using synaptotagmin-1 and elements of a slower isoform, synaptotagmin-7. When expressed in neurons, the chimera slowed the rate of neurotransmitter release. Furthermore, unlike native synaptotagmin-1, the chimera was able to function robustly in the presence of strontium-a metal not present in cells. We exploited this ability to show that a key function of synaptotagmin-1 is to penetrate cell membranes. This work sheds light on fundamental mechanisms of neurotransmitter release.
Assuntos
Bioengenharia/métodos , Técnicas Biossensoriais/métodos , Metais/análise , Transmissão Sináptica/fisiologia , Sequência de Aminoácidos , Animais , Feminino , Células HEK293 , Humanos , Cinética , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Estrutura Secundária de Proteína , RatosRESUMO
Dysfunction in mitochondrial maintenance and trafficking is commonly correlated with the development of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Thus, biomedical research has been dedicated to understanding how architecturally complex neurons maintain and transport their mitochondria. However, the systems that coordinate mitochondrial QC (quality control) dynamics and trafficking in response to neuronal activity and stress are less understood. Additionally, the degree of integration between the processes of mitochondrial trafficking and QC is unclear. Recent work indicates that mitochondrial motility modulators (i.e., anchors and tethers) help coordinate mitochondrial health by mediating distinct, stress-level-appropriate QC pathways following mitochondrial damage. This review summarizes current evidence supporting the role of two mitochondrial motility modulators, Syntaphilin and Mitofusin 2, in coordinating mitochondrial QC to promote neuronal health. Exploring motility modulators' intricate regulatory molecular landscape may reveal new therapeutic targets for delaying disease progression and enhancing neuronal survival post-insult.
Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Neurônios , Humanos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , GTP Fosfo-Hidrolases/metabolismoRESUMO
Synaptotagmin is the major calcium sensor for fast synaptic transmission that requires the synchronous fusion of synaptic vesicles. Synaptotagmin contains two calcium-binding domains: C2A and C2B. Mutation of a positively charged residue (R233Q in rat) showed that Ca2+-dependent interactions between the C2A domain and membranes play a role in the electrostatic switch that initiates fusion. Surprisingly, aspartate-to-asparagine mutations in C2A that inhibit Ca2+ binding support efficient synaptic transmission, suggesting that Ca2+ binding by C2A is not required for triggering synchronous fusion. Based on a structural analysis, we generated a novel mutation of a single Ca2+-binding residue in C2A (D229E in Drosophila) that inhibited Ca2+ binding but maintained the negative charge of the pocket. This C2A aspartate-to-glutamate mutation resulted in â¼80% decrease in synchronous transmitter release and a decrease in the apparent Ca2+ affinity of release. Previous aspartate-to-asparagine mutations in C2A partially mimicked Ca2+ binding by decreasing the negative charge of the pocket. We now show that the major function of Ca2+ binding to C2A is to neutralize the negative charge of the pocket, thereby unleashing the fusion-stimulating activity of synaptotagmin. Our results demonstrate that Ca2+ binding by C2A is a critical component of the electrostatic switch that triggers synchronous fusion. Thus, Ca2+ binding by C2B is necessary and sufficient to regulate the precise timing required for coupling vesicle fusion to Ca2+ influx, but Ca2+ binding by both C2 domains is required to flip the electrostatic switch that triggers efficient synchronous synaptic transmission.
Assuntos
Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/fisiologia , Cálcio/metabolismo , Eletricidade Estática , Transmissão Sináptica/fisiologia , Sinaptotagminas/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Ligação ao Cálcio/metabolismo , Drosophila melanogaster , Feminino , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Inibição Neural/fisiologia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Sinaptotagminas/deficiência , Sinaptotagminas/genética , TermodinâmicaRESUMO
Mitochondria are dynamic organelles critical for metabolic homeostasis by controlling energy production via ATP synthesis. To support cellular metabolism, various mitochondrial quality control mechanisms cooperate to maintain a healthy mitochondrial network. One such pathway is mitophagy, where PTEN-induced kinase 1 (PINK1) and Parkin phospho-ubiquitination of damaged mitochondria facilitate autophagosome sequestration and subsequent removal from the cell via lysosome fusion. Mitophagy is important for cellular homeostasis, and mutations in Parkin are linked to Parkinson's disease (PD). Due to these findings, there has been a significant emphasis on investigating mitochondrial damage and turnover to understand the molecular mechanisms and dynamics of mitochondrial quality control. Here, live-cell imaging was used to visualize the mitochondrial network of HeLa cells, to quantify the mitochondrial membrane potential and superoxide levels following treatment with carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a mitochondrial uncoupling agent. In addition, a PD-linked mutation of Parkin (ParkinT240R) that inhibits Parkin-dependent mitophagy was expressed to determine how mutant expression impacts the mitochondrial network compared to cells expressing wild-type Parkin. The protocol outlined here describes a simple workflow using fluorescence-based approaches to quantify mitochondrial membrane potential and superoxide levels effectively.
Assuntos
Proteínas Quinases , Superóxidos , Humanos , Células HeLa , Proteínas Quinases/metabolismo , Potencial da Membrana Mitocondrial , Fluorescência , Ubiquitina-Proteína Ligases/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologiaRESUMO
Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), increasing phosphorylation of RAB GTPases through hyperactive kinase activity. We find that LRRK2-hyperphosphorylated RABs disrupt the axonal transport of autophagosomes by perturbing the coordinated regulation of cytoplasmic dynein and kinesin. In iPSC-derived human neurons, knockin of the strongly hyperactive LRRK2-p.R1441H mutation causes striking impairments in autophagosome transport, inducing frequent directional reversals and pauses. Knockout of the opposing protein phosphatase 1H (PPM1H) phenocopies the effect of hyperactive LRRK2. Overexpression of ADP-ribosylation factor 6 (ARF6), a GTPase that acts as a switch for selective activation of dynein or kinesin, attenuates transport defects in both p.R1441H knockin and PPM1H knockout neurons. Together, these findings support a model where a regulatory imbalance between LRRK2-hyperphosphorylated RABs and ARF6 induces an unproductive "tug-of-war" between dynein and kinesin, disrupting processive autophagosome transport. This disruption may contribute to PD pathogenesis by impairing the essential homeostatic functions of axonal autophagy.
Assuntos
GTP Fosfo-Hidrolases , Doença de Parkinson , Humanos , Fator 6 de Ribosilação do ADP , Autofagossomos/metabolismo , Transporte Axonal/fisiologia , Dineínas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Doença de Parkinson/patologia , Fosfoproteínas Fosfatases/metabolismo , FosforilaçãoRESUMO
The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-ß-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc may be a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, suggesting a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.
Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Filamentos Intermediários , Mutação , Glicosilação , Acetilglucosamina , Processamento de Proteína Pós-TraducionalRESUMO
The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-ß-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. Interestingly, NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc is a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons, underlining its functional significance. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, indicating a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.
RESUMO
The accumulation of dysfunctional mitochondria is a hallmark of neurodegenerative diseases, yet the dynamics of mitochondrial turnover in neurons are unclear. Here, we describe a protocol to monitor the degradation of spectrally distinct, "aged" mitochondrial populations. We describe the preparation and transfection of primary rat hippocampal neuron cultures. We detail a mitochondrial-damaging assay, a SNAP pulse-chase labeling paradigm, and live imaging to visualize the mitochondrial network. Finally, we provide steps to quantify mitochondrial turnover via lysosomal fusion. For complete details on the use and execution of this protocol, please refer to Evans and Holzbaur (2020a).
Assuntos
Mitofagia , Neurônios , Ratos , Animais , Neurônios/metabolismo , Mitocôndrias/metabolismo , Corantes/metabolismo , Hipocampo/metabolismoRESUMO
While it is commonly thought that microaggressions are isolated incidents, microaggressions are ingrained throughout the academic research institution (Young, Anderson and Stewart 2015; Lee et al. 2020). Persons Excluded from science because of Ethnicity and Race (PEERs) frequently experience microaggressions from various academicians, including graduate students, postdocs and faculty (Asai 2020; Lee et al. 2020). Here, we elaborate on a rationale for concrete actions to cope with and diminish acts of microaggressions that may otherwise hinder the inclusion of PEERs. We encourage Science, Technology, Engineering and Mathematics (STEM) departments and leadership to affirm PEER scholar identities and promote allyship by infusing sensitivity, responsiveness and anti-bias awareness.
Assuntos
Microagressão , Racismo/prevenção & controle , Ciência/organização & administração , Engenharia , Humanos , Matemática , Estudantes , Tecnologia , UniversidadesRESUMO
The cargo-specific removal of organelles via selective autophagy is important to maintain neuronal homeostasis. Genetic studies indicate that deficits in these pathways are implicated in neurodegenerative diseases, including Parkinson's and amyotrophic lateral sclerosis. Here, we review our current understanding of the pathways that regulate mitochondrial quality control, and compare these mechanisms to those regulating turnover of the endoplasmic reticulum and the clearance of protein aggregates. Research suggests that there are multiple mechanisms regulating the degradation of specific cargos, such as dysfunctional organelles and protein aggregates. These mechanisms are critical for neuronal health, as neurons are uniquely vulnerable to impairment in organelle quality control pathways due to their morphology, size, polarity, and postmitotic nature. We highlight the consequences of dysregulation of selective autophagy in neurons and discuss current challenges in correlating noncongruent findings from in vitro and in vivo systems.
Assuntos
Autofagia/genética , Retículo Endoplasmático/genética , Mitofagia/genética , Neurônios/metabolismo , Esclerose Lateral Amiotrófica/genética , Homeostase/genética , Humanos , Doença de Parkinson/genética , Agregados Proteicos/genética , Transdução de Sinais/genéticaRESUMO
Damaged mitochondria are selectively removed from the cell in a process termed mitophagy. This mitochondrial quality control mechanism is important for neuronal homeostasis, and mutations in pathway components are causative for Parkinson disease and amyotrophic lateral sclerosis (ALS). Here, we discuss our recent work using a novel mild induction paradigm to investigate the spatiotemporal dynamics of mitophagy in primary neurons. Using live-cell imaging, we find that mitophagy-associated proteins translocate to depolarized mitochondrial fragments. These mitophagic events were primarily localized to somatodendritic compartments, suggesting neuronal mitophagy is primarily a somal quality control mechanism. Damaged mitochondria were efficiently sequestered within autophagosomes, but lysosomal fusion or acidification was significantly delayed. Surprisingly, engulfed mitochondria persisted in non-acidified vesicular compartments for hours to days after initial damage. Expression of an ALS-associated mutation disrupted the membrane potential of the mitochondrial network, and oxidative stress exacerbated this effect. Importantly, our results highlight the slow kinetics of mitophagy and suggest that slow turnover of damaged mitochondria may increase neuronal susceptibility to neurodegeneration.