Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Funct Integr Genomics ; 14(1): 261-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24318765

RESUMO

This study assessed the effects of enhanced dietary plane of nutrition (early nutritional program (ENH)) on the gene expression pattern of ruminal epithelial tissue of young Holstein calves. Male Holstein calves were fed (3 to 42 days of age) with reconstituted control milk replacer (MR) (20 % crude protein, 20 % fat; 1.25 lb solids/calf) plus conventional starter (CON; 19.6 % crude protein, dry matter basis) or a high-protein MR (ENH; 28.5 % crude protein, 15 % fat; at around 2 % of body weight) plus high-crude protein starter (25.5 % crude protein, dry matter basis). The calves were weaned on day 43. Groups of calves in CON and ENH treatment were harvested after 5 and 10 weeks of feeding. The ruminal epithelium from five calves in each group was used for transcript profiling using a bovine oligonucleotide microarray. The postweaning mass of the reticulo-rumen was greater (P < 0.01) in calves consuming ENH. Transcriptome analysis revealed that 208 genes were altered due to treatment and 587 due to time alone. Bioinformatics analysis revealed that "galactose metabolism," "citrate cycle," "pyruvate metabolism," and "basal transcription factors" were the most impacted and induced pathways due to feeding ENH; whereas, "valine, leucine, and isoleucine biosynthesis" and "glyoxylate and dicarboxylate metabolism" were among the most inhibited. The integrated interpretation of the results suggested an overall increase in metabolism after weaning, particularly biosynthesis of glycan and nucleotide metabolism. Furthermore, the preweaning alterations in the transcriptome were mostly associated with cell growth, death, tissue development, and cellular morphology. The postweaning response revealed overexpression of genes associated with cell adhesion molecules, p53 signaling, and fatty acid metabolism. Our results indicated that feeding ENH to young Holstein calves elicited a strong transcriptomic response in the ruminal epithelial tissue.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Epitélio/fisiologia , Rúmen/fisiologia , Transcriptoma , Animais , Bovinos , Proteínas Alimentares/farmacologia , Regulação da Expressão Gênica , Masculino , Anotação de Sequência Molecular , Desmame
2.
Animals (Basel) ; 14(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338094

RESUMO

Traits such as shape, size, and color often influence the economic and sentimental value of a horse. Around the world, horses are bred and prized for the colors and markings that make their unique coat patterns stand out from the crowd. The underlying genetic mechanisms determining the color of a horse's coat can vary greatly in their complexity. For example, only two genetic markers are used to determine a horse's base coat color, whereas over 50 genetic variations have been discovered to cause white patterning in horses. Some of these white-causing mutations are benign and beautiful, while others have a notable impact on horse health. Negative effects range from slightly more innocuous defects, like deafness, to more pernicious defects, such as the lethal developmental defect incurred when a horse inherits two copies of the Lethal White Overo allele. In this review, we explore, in detail, the etiology of white spotting and its overall effect on the domestic horse to Spot the Pattern of these beautiful (and sometimes dangerous) white mutations.

3.
Animals (Basel) ; 14(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338160

RESUMO

The influence of a horse's appearance on health, sentimental and monetary value has driven the desire to understand the etiology of coat color. White markings on the coat define inclusion for multiple horse breeds, but they may disqualify a horse from registration in other breeds. In domesticated horses (Equus caballus), 35 KIT alleles are associated with or cause depigmentation and white spotting. It is a common misconception among the general public that a horse can possess only two KIT variants. To correct this misconception, we used BEAGLE 5.4-phased NGS data to identify 15 haplotypes possessing two or more KIT variants previously associated with depigmentation phenotypes. We sourced photos for 161 horses comprising 12 compound genotypes with three or more KIT variants and employed a standardized method to grade depigmentation, yielding average white scores for each unique compound genotype. We found that 7 of the 12 multi-variant haplotypes resulted in significantly more depigmentation relative to the single-variant haplotypes (ANOVA). It is clear horses can possess more than two KIT variants, and future work aims to document phenotypic variations for each compound genotype.

4.
J Equine Vet Sci ; 127: 104563, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37182614

RESUMO

Mutations in KIT, a gene that influences melanoblast migration and pigmentation, often result in mammalian white spotting. As of February 2023, over 30 KIT variants associated with white spotting were documented in Equus caballus (horse). Here we report an association of increased white spotting on the skin and coat with a variant in the 5'UTR of KIT (rs1149701677: g.79,618,649A>C). Horses possessing at least one alternate allele demonstrate phenotypic characteristics similar to other KIT mutations: clear borders around unpigmented regions on the body, face, and limbs. Using a quantitative measure of depigmentation, we observed an average white score of 10.70 among individuals with rs1149701677, while the average score of the control, homozygous reference sample was 2.23 (P = 1.892e-11, n = 109, t-test). The rs1149701677 site has a cross-species conservation score of 3.4, one of the highest scores across the KIT 5'UTR, implying regulatory importance for this site. Ensembl also predicted a "moderately impactful" functional effect for the rs1149701677 variant. We propose that this single nucleotide variant likely alters the regulation of KIT, which in turn may disrupt melanoblast migration causing an increase in white spotting on the coat. Alternatively, the rs1149701677 variant may be in linkage with another nearby variant with an as-yet-undiscovered functional impact. We propose to term this new allele "Holiday White" or W35 based on conventional nomenclature.


Assuntos
Cor de Cabelo , Mamíferos , Cavalos/genética , Animais , Cor de Cabelo/genética , Regiões 5' não Traduzidas/genética , Mamíferos/genética
5.
J Equine Vet Sci ; 128: 104875, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406837

RESUMO

Mutations causing depigmentation are relatively common in Equus caballus (horse). Over 40 alleles in multiple genes are associated with increased white spotting (as of February 2023). The splashed white phenotype, a coat spotting pattern described as appearing like the horse has been splashed with white paint, was previously associated with variants in the PAX3 and MITF genes. Both genes encode transcription factors known to control melanocyte migration and pigmentation. We report two novel mutations, a stop-gain mutation in PAX3 (XM_005610643.3:c.927C>T, ECA6:11,196,181, EquCab3.0) and a missense mutation in a binding domain of MITF (NM_001163874.1:c.993A>T, ECA16:21,559,940, EquCab3.0), each with a strong association with increased depigmentation in Pura Raza Española horses (P = 1.144E-11, N = 30, P = 4.441E-16, N = 39 respectively). Using a quantitative method to score depigmentation, the PAX3 and MITF mutations were found to have average white scores of 25.50 and 24.45, respectively, compared to the average white coat spotting score of 1.89 in the control set. The functional impact for each mutation was predicted to be moderate to extreme (I-TASSER, SMART, Variant Effect Predictor, SIFT). We propose to designate the MITF mutant allele as Splashed White 9 and the PAX3 mutant allele as Splashed White 10 per convention.


Assuntos
Cor de Cabelo , Pigmentação , Cavalos/genética , Animais , Cor de Cabelo/genética , Pigmentação/genética , Fenótipo
6.
J Transl Med ; 10: 125, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22709571

RESUMO

BACKGROUND: There is resurgence within drug and biomarker development communities for the use of primary tumorgraft models as improved predictors of patient tumor response to novel therapeutic strategies. Despite perceived advantages over cell line derived xenograft models, there is limited data comparing the genotype and phenotype of tumorgrafts to the donor patient tumor, limiting the determination of molecular relevance of the tumorgraft model. This report directly compares the genomic characteristics of patient tumors and the derived tumorgraft models, including gene expression, and oncogenic mutation status. METHODS: Fresh tumor tissues from 182 cancer patients were implanted subcutaneously into immune-compromised mice for the development of primary patient tumorgraft models. Histological assessment was performed on both patient tumors and the resulting tumorgraft models. Somatic mutations in key oncogenes and gene expression levels of resulting tumorgrafts were compared to the matched patient tumors using the OncoCarta (Sequenom, San Diego, CA) and human gene microarray (Affymetrix, Santa Clara, CA) platforms respectively. The genomic stability of the established tumorgrafts was assessed across serial in vivo generations in a representative subset of models. The genomes of patient tumors that formed tumorgrafts were compared to those that did not to identify the possible molecular basis to successful engraftment or rejection. RESULTS: Fresh tumor tissues from 182 cancer patients were implanted into immune-compromised mice with forty-nine tumorgraft models that have been successfully established, exhibiting strong histological and genomic fidelity to the originating patient tumors. Comparison of the transcriptomes and oncogenic mutations between the tumorgrafts and the matched patient tumors were found to be stable across four tumorgraft generations. Not only did the various tumors retain the differentiation pattern, but supporting stromal elements were preserved. Those genes down-regulated specifically in tumorgrafts were enriched in biological pathways involved in host immune response, consistent with the immune deficiency status of the host. Patient tumors that successfully formed tumorgrafts were enriched for cell signaling, cell cycle, and cytoskeleton pathways and exhibited evidence of reduced immunogenicity. CONCLUSIONS: The preservation of the patient's tumor genomic profile and tumor microenvironment supports the view that primary patient tumorgrafts provide a relevant model to support the translation of new therapeutic strategies and personalized medicine approaches in oncology.


Assuntos
Genômica , Neoplasias/genética , Animais , Humanos , Camundongos , Camundongos Nus , Mutação , Neoplasias/patologia
7.
Proc Natl Acad Sci U S A ; 106(14): 5687-92, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19297625

RESUMO

Implantation is crucial for placental development that will subsequently impact fetal growth and pregnancy success with consequences on postnatal health. We postulated that the pattern of genes expressed by the endometrium when the embryo becomes attached to the mother uterus could account for the final outcome of a pregnancy. As a model, we used the bovine species where the embryo becomes progressively and permanently attached to the endometrium from day 20 of gestation onwards. At that stage, we compared the endometrial genes profiles in the presence of an in vivo fertilized embryo (AI) with the endometrial patterns obtained in the presence of nuclear transfer (SCNT) or in vitro fertilized embryos (IVF), both displaying lower and different potentials for term development. Our data provide evidence that the endometrium can be considered as a biological sensor able to fine-tune its physiology in response to the presence of embryos whose development will become altered much later after the implantation process. Compared with AI, numerous biological functions and several canonical pathways with a major impact on metabolism and immune function were found to be significantly altered in the endometrium of SCNT pregnancies at implantation, whereas the differences were less pronounced with IVF embryos. Determining the limits of the endometrial plasticity at the onset of implantation should bring new insights on the contribution of the maternal environment to the development of an embryo and the success of pregnancy.


Assuntos
Endométrio/embriologia , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência Nuclear , Resultado da Gravidez/genética , Animais , Bovinos , Implantação do Embrião , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Endométrio/metabolismo , Endométrio/fisiologia , Feminino , Fertilização , Gravidez
8.
Funct Integr Genomics ; 11(1): 151-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20809086

RESUMO

Cows experiencing severe postpartal negative energy balance (NEB) are at greater risk of developing mastitis than cows in positive energy balance (PEB). Our objectives were to compare mammary tissue gene expression profiles between lactating cows (n = 5/treatment) subjected to feed restriction to induce NEB and cows fed ad libitum to maintain PEB in order to identify genes involved in immune response and cellular metabolism that may predispose cows to an intramammary infection in non-infected mammary gland. The NEB cows were feed-restricted to 60% of calculated net energy for lactation requirements, and cows fed PEB cows were fed the same diet ad libitum. At 5 days after feed restriction, one rear mammary gland from all cows was biopsied for RNA extraction and transcript profiling using microarray and quantitative PCR. Energy balance (NEB vs. PEB) resulted in 278 differentially expressed genes (DEG). Among up-regulated DEG (n = 180), Ingenuity Pathway Analysis® identified lipid metabolism (8) and molecular transport (14) as some of the most enriched molecular functions. Genes down-regulated by NEB (98) were associated with cell growth and proliferation (21) and cell death (18). Results indicate that DEG due to NEB in mid-lactation were associated with numerous biological functions but we did not identify genes that could, a priori, be associated with risk of intramammary infection in non-infected mammary glands. Further studies with early postpartal cows are required.


Assuntos
Bovinos/imunologia , Dieta , Metabolismo Energético , Lactação/imunologia , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/imunologia , Animais , Biomarcadores/metabolismo , Bovinos/genética , Bovinos/microbiologia , Feminino , Perfilação da Expressão Gênica , Lactação/genética , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/patologia , Mastite Bovina/genética , Análise de Sequência com Séries de Oligonucleotídeos
9.
Funct Integr Genomics ; 11(1): 139-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20844914

RESUMO

Microarray gene expression experiments often consider specific developmental stages, tissue sources, or reproductive technologies. This focus hinders the understanding of the cattle embryo transcriptome. To address this, four microarray experiments encompassing three developmental stages (7, 25, 280 days), two tissue sources (embryonic or extra-embryonic), and two reproductive technologies (artificial insemination or AI and somatic cell nuclear transfer or NT) were combined using two sets of meta-analyses. The first set of meta-analyses uncovered 434 genes differentially expressed between AI and NT (regardless of stage or source) that were not detected by the individual-experiment analyses. The molecular function of transferase activity was enriched among these genes that included ECE2, SLC22A1, and a gene similar to CAMK2D. Gene POLG2 was over-expressed in AI versus NT 7-day embryos and was under-expressed in AI versus NT 25-day embryos. Gene HAND2 was over-expressed in AI versus NT extra-embryonic samples at 280 days yet under-expressed in AI versus NT embryonic samples at 7 days. The second set of meta-analyses uncovered enrichment of system, organ, and anatomical structure development among the genes differentially expressed between 7- and 25-day embryos from either reproductive technology. Genes PRDX1and SLC16A1 were over-expressed in 7- versus 25-day AI embryos and under-expressed in 7- versus 25-day NT embryos. Changes in stage were associated with high number of differentially expressed genes, followed by technology and source. Genes with transferase activity may hold a clue to the differences in efficiency between reproductive technologies.


Assuntos
Blastocisto/metabolismo , Embrião de Mamíferos/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Inseminação Artificial , Técnicas de Transferência Nuclear , Transferases/metabolismo , Animais , Biomarcadores/metabolismo , Blastocisto/citologia , Bovinos , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Fertilização in vitro , Análise de Sequência com Séries de Oligonucleotídeos
10.
Reproduction ; 141(1): 79-89, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20926692

RESUMO

Axis specification in mouse is determined by a sequence of reciprocal interactions between embryonic and extra-embryonic tissues so that a few extra-embryonic genes appear as 'patterning' the embryo. Considering these interactions as essential, but lacking in most mammals the genetically driven approaches used in mouse and the corresponding patterning mutants, we examined whether a molecular signature originating from extra-embryonic tissues could relate to the developmental stage of the embryo proper and predict it. To this end, we have profiled bovine extra-embryonic tissues at peri-implantation stages, when gastrulation and early neurulation occur, and analysed the subsequent expression profiles through the use of predictive methods as previously reported for tumour classification. A set of six genes (CALM1, CPA3, CITED1, DLD, HNRNPDL, and TGFB3), half of which had not been previously associated with any extra-embryonic feature, appeared significantly discriminative and mainly dependent on embryonic tissues for its faithful expression. The predictive value of this set of genes for gastrulation and early neurulation stages, as assessed on naive samples, was remarkably high (93%). In silico connected to the bovine orthologues of the mouse patterning genes, this gene set is proposed as a new trait for embryo staging. As such, this will allow saving the bovine embryo proper for molecular or cellular studies. To us, it offers as well new perspectives for developmental phenotyping and modelling of embryonic/extra-embryonic co-differentiation.


Assuntos
Padronização Corporal/genética , Embrião de Mamíferos/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Neurulação/genética , Animais , Bovinos , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Genótipo , Idade Gestacional , Inseminação Artificial , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
11.
Physiol Genomics ; 41(2): 161-70, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20103698

RESUMO

Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5) to better understand the mechanisms associated with NEB and risk of mastitis during the transition period. The NEB cows were feed-restricted to 60% of calculated net energy for lactation requirements for 7 days, and cows assigned to PEB were fed the same diet for ad libitum intake. Five days after feed restriction, one rear mammary quarter of each cow was inoculated with 5,000 cfu of S. uberis (O140J). At 20 h postinoculation, S. uberis-infected mammary quarters from all cows were biopsied for RNA extraction. Negative energy balance resulted in 287 differentially expressed genes (DEG; false discovery rate ≤ 0.05), with 86 DEG upregulated and 201 DEG downregulated in NEB vs. PEB. Canonical pathways most affected by NEB were IL-8 signaling (10 genes), glucocorticoid receptor signaling (13), and NRF2-mediated oxidative stress response (10). Among the genes differentially expressed by NEB, cell growth and proliferation (48) and cellular development (36) were the most enriched functions. Regarding immune response, HLA-A was upregulated due to NEB, whereas the majority of genes involved in immune response were downregulated (e.g., AKT1, IRAK1, MAPK9, and TRAF6). This study provided new avenues for investigation into the mechanisms relating NEB and susceptibility to mastitis in lactating dairy cows.


Assuntos
Restrição Calórica , Metabolismo Energético , Perfilação da Expressão Gênica/veterinária , Glândulas Mamárias Animais/imunologia , Mastite Bovina/genética , Streptococcus/patogenicidade , Animais , Biópsia/veterinária , Bovinos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Lactação , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/imunologia , Mastite Bovina/metabolismo , Mastite Bovina/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Fatores de Tempo
12.
BMC Genomics ; 11: 161, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20214810

RESUMO

BACKGROUND: The diversity of placental architectures within and among mammalian orders is believed to be the result of adaptive evolution. Although, the genetic basis for these differences is unknown, some may arise from rapidly diverging and lineage-specific genes. Previously, we identified 91 novel lineage-specific transcripts (LSTs) from a cow term-placenta cDNA library, which are excellent candidates for adaptive placental functions acquired by the ruminant lineage. The aim of the present study was to infer functions of previously uncharacterized lineage-specific genes (LSGs) using co-expression, promoter, pathway and network analysis. RESULTS: Clusters of co-expressed genes preferentially expressed in liver, placenta and thymus were found using 49 previously uncharacterized LSTs as seeds. Over-represented composite transcription factor binding sites (TFBS) in promoters of clustered LSGs and known genes were then identified computationally. Functions were inferred for nine previously uncharacterized LSGs using co-expression analysis and pathway analysis tools. Our results predict that these LSGs may function in cell signaling, glycerophospholipid/fatty acid metabolism, protein trafficking, regulatory processes in the nucleus, and processes that initiate parturition and immune system development. CONCLUSIONS: The placenta is a rich source of lineage-specific genes that function in the adaptive evolution of placental architecture and functions. We have shown that co-expression, promoter, and gene network analyses are useful methods to infer functions of LSGs with heretofore unknown functions. Our results indicate that many LSGs are involved in cellular recognition and developmental processes. Furthermore, they provide guidance for experimental approaches to validate the functions of LSGs and to study their evolution.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Animais , Sítios de Ligação/genética , Bovinos , Análise por Conglomerados , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Fígado/metabolismo , Placenta/metabolismo , Gravidez , Análise de Sequência de DNA , Timo/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
13.
BMC Genomics ; 11: 331, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20504330

RESUMO

BACKGROUND: The neonatal bovine mammary fat pad (MFP) surrounding the mammary parenchyma (PAR) is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from approximately 65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other. RESULTS: Over 9,000 differentially expressed genes (DEG; False discovery rate or=1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736) we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742) belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR) with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR Signaling in MFP vs. PAR). CONCLUSIONS: Functional analyses underscored a reciprocal influence in determining the biological features of MFP and PAR during neonatal development. This was exemplified by the potential effect that the signaling molecules (cytokines, growth factors) released preferentially (i.e., more highly-expressed) by PAR or MFP could have on molecular functions or signaling pathways enriched in the MFP or PAR. These bidirectional interactions might be required to coordinate mammary tissue development under normal circumstances or in response to nutrition.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Desmame , Animais , Bovinos , Biologia Computacional , Citocinas/genética , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Glândulas Mamárias Animais/citologia , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/genética
14.
Physiol Genomics ; 39(1): 14-27, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19622795

RESUMO

At implantation the endometrium undergoes modifications necessary for its physical interactions with the trophoblast as well as the development of the conceptus. We aim to identify endometrial factors and pathways essential for a successful implantation in the caruncular (C) and the intercaruncular (IC) areas in cattle. Using a 13,257-element bovine oligonucleotide array, we established expression profiles at day 20 of the estrous cycle or pregnancy (implantation), revealing 446 and 1,295 differentially expressed genes (DEG) in C and IC areas, respectively (false discovery rate = 0.08). The impact of the conceptus was higher on the immune response function in C but more prominent on the regulation of metabolism function in IC. The C vs. IC direct comparison revealed 1,177 and 453 DEG in cyclic and pregnant animals respectively (false discovery rate = 0.05), with a major impact of the conceptus on metabolism and cell adhesion. We selected 15 genes including C11ORF34, CXCL12, CXCR4, PLAC8, SCARA5, and NPY and confirmed their differential expression by quantitative RT-PCR. The cellular localization was analyzed by in situ hybridization and, upon pregnancy, showed gene-specific patterns of cell distribution, including a high level of expression in the luminal epithelium for C11ORF34 and MX1. Using primary cultures of bovine endometrial cells, we identified PTN, PLAC8, and CXCL12 as interferon-tau (IFNT) target genes and MSX1 and CXCR7 as IFNT-regulated genes, whereas C11ORF34 was not an IFNT-regulated gene. Our transcriptomic data provide novel molecular insights accounting for the biological functions related to the C or IC endometrial areas and may contribute to the identification of potential biomarkers for normal and perturbed early pregnancy.


Assuntos
Bovinos/genética , Implantação do Embrião/genética , Endométrio/metabolismo , Perfilação da Expressão Gênica , Animais , Implantação do Embrião/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hibridização In Situ , Interferon Tipo I/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Proteínas da Gravidez/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
15.
BMC Genomics ; 10: 542, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19925655

RESUMO

BACKGROUND: Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and decrease economic losses to dairy farmers. The main objective of this study was to determine the most affected gene networks and pathways in mammary tissue in response to an intramammary infection (IMI) with S. uberis and relate these with other physiological measurements associated with immune and/or metabolic responses to mastitis challenge with S. uberis O140J. RESULTS: Streptococcus uberis IMI resulted in 2,102 (1,939 annotated) differentially expressed genes (DEG). Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each), the majority of which were signaling pathways. Among the most inhibited were LXR/RXR Signaling and PPARalpha/RXRalpha Signaling. Pathways activated by IMI were IL-10 Signaling and IL-6 Signaling which likely reflected counter mechanisms of mammary tissue to respond to infection. Of the 2,102 DEG, 1,082 were up-regulated during IMI and were primarily involved with the immune response, e.g., IL6, TNF, IL8, IL10, SELL, LYZ, and SAA3. Genes down-regulated (1,020) included those associated with milk fat synthesis, e.g., LPIN1, LPL, CD36, and BTN1A1. Network analysis of DEG indicated that TNF had positive relationships with genes involved with immune system function (e.g., CD14, IL8, IL1B, and TLR2) and negative relationships with genes involved with lipid metabolism (e.g., GPAM, SCD, FABP4, CD36, and LPL) and antioxidant activity (SOD1). CONCLUSION: Results provided novel information into the early signaling and metabolic pathways in mammary tissue that are associated with the innate immune response to S. uberis infection. Our study indicated that IMI challenge with S. uberis (strain O140J) elicited a strong transcriptomic response, leading to potent activation of pro-inflammatory pathways that were associated with a marked inhibition of lipid synthesis, stress-activated kinase signaling cascades, and PPAR signaling (most likely PPARgamma). This latter effect may provide a mechanistic explanation for the inverse relationship between immune response and milk fat synthesis.


Assuntos
Redes Reguladoras de Genes , Metabolismo dos Lipídeos , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , PPAR gama/metabolismo , Transdução de Sinais , Streptococcus/fisiologia , Animais , Bovinos , Proliferação de Células , Biologia Computacional , Feminino , Humanos , Metabolismo dos Lipídeos/genética , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Leite/química , Leite/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais/genética , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/patologia , Regulação para Cima
16.
Mol Reprod Dev ; 76(1): 38-47, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18449896

RESUMO

In vitro production (IVP) has been shown to affect embryonic gene expression and often result in large offspring syndrome (LOS) in cattle and sheep. To dissect the effects of in vitro maturation, fertilization and culture on bovine embryos, we compared the expression profiles of single blastocysts generated by: (1) in vitro maturation, fertilization and culture (IVF); (2) in vivo maturation, fertilization and in vitro culture (IVD); and (3) in vivo maturation, fertilization and development (AI). To conduct expression profiling, total RNA was isolated from individual embryos, linearly amplified and hybridized to a custom bovine cDNA microarray containing approximately 6,300 unique genes. There were 306, 367, and 200 genes differentially expressed between the AI and IVD, IVF and IVD, and AI and IVF comparisons, respectively. Interestingly, 44 differentially expressed genes were identified between the AI embryos and both the IVF and IVD embryos, making these potential candidates for LOS. There were 60 genes differentially expressed between the IVF embryos and the AI and IVD embryos. The Gene Ontology category "RNA processing" was over-represented among the genes that were down-regulated in the IVF embryos, indicating an effect of in vitro oocyte maturation/fertilization on the ability to transcribe maternal RNA stores. A culture effect on the expression of genes involved in translation was also observed by the comparison of AI with IVD embryos.


Assuntos
Técnicas de Cultura Embrionária , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Fertilização in vitro , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Bovinos , Epigênese Genética/genética , Cromossomo X/genética
17.
Reprod Fertil Dev ; 21(1): 22-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19152742

RESUMO

Microarray technology enables the interrogation of thousands of genes at one time and therefore a systems level of analysis. Recent advances in the amplification of RNA, genome sequencing and annotation, and the lower cost of developing microarrays or purchasing them commercially, have facilitated the analysis of single preimplantation embryos. The present review discusses the components of embryonic expression profiling and examines current research that has used microarrays to study the effects of in vitro production and nuclear transfer.


Assuntos
Fertilização in vitro/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos
18.
J Mol Diagn ; 21(6): 1034-1052, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31401124

RESUMO

Pharmacogenetic testing increasingly is available from clinical and research laboratories. However, only a limited number of quality control and other reference materials currently are available for the complex rearrangements and rare variants that occur in the CYP2D6 gene. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Cell Repositories (Camden, NJ), has characterized 179 DNA samples derived from Coriell cell lines. Testing included the recharacterization of 137 genomic DNAs that were genotyped in previous Genetic Testing Reference Material Coordination Program studies and 42 additional samples that had not been characterized previously. DNA samples were distributed to volunteer testing laboratories for genotyping using a variety of commercially available and laboratory-developed tests. These publicly available samples will support the quality-assurance and quality-control programs of clinical laboratories performing CYP2D6 testing.


Assuntos
Alelos , Citocromo P-450 CYP2D6/genética , Técnicas de Genotipagem/normas , Variação Genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Colaboração Intersetorial , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
19.
Physiol Genomics ; 33(1): 65-77, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18089771

RESUMO

Transcription profiling of placentomes derived from somatic cell nuclear transfer (SCNT, n = 20), in vitro fertilization (IVF, n = 9), and artificial insemination (AI, n = 9) at or near term development was performed to better understand why SCNT and IVF often result in placental defects, hydrops, and large offspring syndrome (LOS). Multivariate analysis of variance was used to distinguish the effects of SCNT, IVF, and AI on gene expression, taking into account the effects of parturition (term or preterm), sex of fetus, breed of dam, breed of fetus, and pathological finding in the offspring (hydrops, normal, or other abnormalities). Differential expression of 20 physiologically important genes was confirmed with quantitative PCR. The largest effect on placentome gene expression was attributable to whether placentas were collected at term or preterm (i.e., whether the collection was because of disease or to obtain stage-matched controls) followed by placentome source (AI, IVF, or SCNT). Gene expression in SCNT placentomes was dramatically different from AI (n = 336 genes; 276 >2-fold) and from IVF (n = 733 genes; 162 >2-fold) placentomes. Functional analysis of differentially expressed genes (DEG) showed that IVF has significant effects on genes associated with cellular metabolism. In contrast, DEG associated with SCNT are involved in multiple pathways, including cell cycle, cell death, and gene expression. Many DEG were shared between the gene lists for IVF and SCNT comparisons, suggesting that common pathways are affected by the embryo culture methods used for IVF and SCNT. However, the many unique gene functions and pathways affected by SCNT suggest that cloned fetuses may be starved and accumulating toxic wastes due to placental insufficiency caused by reprogramming errors. Many of these genes are candidates for hydrops and LOS.


Assuntos
Bovinos/genética , Clonagem de Organismos , Perfilação da Expressão Gênica , Técnicas de Transferência Nuclear , Placenta/metabolismo , Animais , Células Cultivadas , Análise por Conglomerados , Embrião de Mamíferos , Feminino , Fertilização in vitro , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Gravidez
20.
Infect Immun ; 76(5): 1897-907, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18316388

RESUMO

Brucellosis is still a widespread zoonotic disease. Very little is known about the interaction between Brucella abortus and trophoblastic cells, which is essential for better understanding the pathogenesis of the Brucella-induced placentitis and abortion, a key event for transmission of the disease. The goal of this study was to evaluate the profile of gene expression by bovine trophoblastic cells during infection with B. abortus. Explants of chorioallantoic membranes were inoculated with B. abortus strain 2308. Microarray analysis was performed at 4 h after infection, and expression of cytokines and chemokines by trophoblastic cells was assessed by real-time reverse transcription-PCR at 6 and 12 h after inoculation. In addition, cytokine and chemokine expression in placentomes from experimentally infected cows was evaluated. Expression of proinflammatory genes by trophoblastic cells was suppressed at 4 h after inoculation, whereas a significant upregulation of CXC chemokines, namely, CXCL6 (GCP-2) and CXCL8 (interleukin 8), was observed at 12 but not at 6 h after inoculation. Placentomes of experimentally infected cows had a similar profile of chemokine expression, with upregulation of CXCL6 and CXCL8. Our data indicate that B. abortus modulates the innate immune response by trophoblastic cells, suppressing the expression of proinflammatory mediators during the early stages of infection that is followed by a delayed and mild expression of proinflammatory chemokines, which is similar to the profile of chemokine expression in the placentomes of experimentally infected cows. This trophoblastic response is likely to contribute to the pathogenesis of B. abortus-induced placentitis.


Assuntos
Brucella abortus/imunologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Trofoblastos/imunologia , Trofoblastos/microbiologia , Animais , Bovinos , Citocinas/biossíntese , Citocinas/genética , Regulação para Baixo , Feminino , Análise de Sequência com Séries de Oligonucleotídeos , Placenta/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Trofoblastos/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA