Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 620(7975): 813-823, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558877

RESUMO

Twenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature's diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature's values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a 'values crisis' underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature's diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures.


Assuntos
Ecossistema , Justiça Ambiental , Política Ambiental , Objetivos , Desenvolvimento Sustentável , Humanos , Biodiversidade , Desenvolvimento Sustentável/economia , Política Ambiental/economia , Mudança Climática
2.
PLoS Biol ; 21(2): e3001991, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36854036

RESUMO

The conservation of evolutionary history has been linked to increased benefits for humanity and can be captured by phylogenetic diversity (PD). The Evolutionarily Distinct and Globally Endangered (EDGE) metric has, since 2007, been used to prioritise threatened species for practical conservation that embody large amounts of evolutionary history. While there have been important research advances since 2007, they have not been adopted in practice because of a lack of consensus in the conservation community. Here, building from an interdisciplinary workshop to update the existing EDGE approach, we present an "EDGE2" protocol that draws on a decade of research and innovation to develop an improved, consistent methodology for prioritising species conservation efforts. Key advances include methods for dealing with uncertainty and accounting for the extinction risk of closely related species. We describe EDGE2 in terms of distinct components to facilitate future revisions to its constituent parts without needing to reconsider the whole. We illustrate EDGE2 by applying it to the world's mammals. As we approach a crossroads for global biodiversity policy, this Consensus View shows how collaboration between academic and applied conservation biologists can guide effective and practical priority-setting to conserve biodiversity.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Animais , Filogenia , Evolução Biológica , Ciências Humanas , Mamíferos
3.
Conserv Biol ; 37(6): e14138, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37377164

RESUMO

Following the failure to fully achieve any of the 20 Aichi biodiversity targets, the future of biodiversity rests in the balance. The Convention on Biological Diversity's Kunming-Montreal Global Biodiversity Framework (GBF) presents the opportunity to preserve nature's contributions to people (NCPs) for current and future generations by conserving biodiversity and averting extinctions. There is a need to safeguard the tree of life-the unique and shared evolutionary history of life on Earth-to maintain the benefits it bestows into the future. Two indicators have been adopted within the GBF to monitor progress toward safeguarding the tree of life: the phylogenetic diversity (PD) indicator and the evolutionarily distinct and globally endangered (EDGE) index. We applied both to the world's mammals, birds, and cycads to show their utility at the global and national scale. The PD indicator can be used to monitor the overall conservation status of large parts of the evolutionary tree of life, a measure of biodiversity's capacity to maintain NCPs for future generations. The EDGE index is used to monitor the performance of efforts to conserve the most distinctive species. The risk to PD of birds, cycads, and mammals increased, and mammals exhibited the greatest relative increase in threatened PD over time. These trends appeared robust to the choice of extinction risk weighting. EDGE species had predominantly worsening extinction risk. A greater proportion of EDGE mammals (12%) had increased extinction risk compared with threatened mammals in general (7%). By strengthening commitments to safeguarding the tree of life, biodiversity loss can be reduced and thus nature's capacity to provide benefits to humanity now and in the future can be preserved.


Indicadores para monitorear el estado del árbol de la vida Resumen El futuro de la biodiversidad peligra tras no haberse logrado ninguno de los 20 Objetivos de Aichi. El Marco Global de Biodiversidad (GBF) de Kunming-Montreal del Convenio sobre la Diversidad Biológica (CDB) representa la oportunidad de preservar las contribuciones de la naturaleza a las personas (PNC) para las generaciones actuales y futuras mediante la conservación de la biodiversidad y la prevención de las extinciones. Es necesario salvaguardar el árbol de la vida -la historia evolutiva única y compartida de la vida en la Tierra- para mantener en el futuro los beneficios que aporta. En el GBF se han adoptado dos indicadores para supervisar los avances hacia el cuidado del árbol de la vida: el indicador de diversidad filogenética y el índice de especies evolutivamente distintas y globalmente amenazadas (EDGE). Aplicamos ambos a los mamíferos, las aves y las cícadas del mundo para demostrar su utilidad a escala mundial y nacional. El indicador de diversidad filogenética puede utilizarse para supervisar el estado de conservación general de grandes partes del árbol evolutivo de la vida, una medida de la capacidad de la biodiversidad para mantener los PNC para las generaciones futuras. El índice EDGE se utiliza para supervisar el rendimiento de los esfuerzos por conservar las especies más distintivas. El riesgo para la diversidad filogenética de aves, cícadas y mamíferos aumentó, y los mamíferos mostraron el mayor aumento relativo de la diversidad filogenética amenazada a lo largo del tiempo. Estas tendencias parecieron sólidas a la hora de elegir la valoración del riesgo de extinción. Las especies EDGE tuvieron un riesgo de extinción predominante cada vez peor. Una mayor proporción de mamíferos EDGE (12%) presentó un riesgo de extinción creciente en comparación con los mamíferos amenazados en general (7%). Si se refuerza el compromiso de salvaguardar el árbol de la vida, se puede reducir la pérdida de biodiversidad y preservar así la capacidad de la naturaleza para proporcionar beneficios a la humanidad ahora y en el futuro.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Humanos , Animais , Filogenia , Biodiversidade , Mamíferos
4.
Conserv Biol ; 29(3): 668-79, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25923191

RESUMO

Because conservation planners typically lack data on where species occur, environmental surrogates--including geophysical settings and climate types--have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within-site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species' environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Fenômenos Geológicos , Mudança Climática , Ecossistema
5.
Conserv Biol ; 29(3): 692-701, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25923052

RESUMO

In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species-centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others' approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Tomada de Decisões , Política Ambiental/legislação & jurisprudência , Fenômenos Geológicos , Mudança Climática , Conservação dos Recursos Naturais/legislação & jurisprudência
6.
Evol Appl ; 17(6): e13728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884021

RESUMO

Given the multitude of challenges Earth is facing, sustainability science is of key importance to our continued existence. Evolution is the fundamental biological process underlying the origin of all biodiversity. This phylogenetic diversity fosters the resilience of ecosystems to environmental change, and provides numerous resources to society, and options for the future. Genetic diversity within species is also key to the ability of populations to evolve and adapt to environmental change. Yet, the value of evolutionary processes and the consequences of their impairment have not generally been considered in sustainability research. We argue that biological evolution is important for sustainability and that the concepts, theory, data, and methodological approaches used in evolutionary biology can, in crucial ways, contribute to achieving the UN Sustainable Development Goals (SDGs). We discuss how evolutionary principles are relevant to understanding, maintaining, and improving Nature Contributions to People (NCP) and how they contribute to the SDGs. We highlight specific applications of evolution, evolutionary theory, and evolutionary biology's diverse toolbox, grouped into four major routes through which evolution and evolutionary insights can impact sustainability. We argue that information on both within-species evolutionary potential and among-species phylogenetic diversity is necessary to predict population, community, and ecosystem responses to global change and to make informed decisions on sustainable production, health, and well-being. We provide examples of how evolutionary insights and the tools developed by evolutionary biology can not only inspire and enhance progress on the trajectory to sustainability, but also highlight some obstacles that hitherto seem to have impeded an efficient uptake of evolutionary insights in sustainability research and actions to sustain SDGs. We call for enhanced collaboration between sustainability science and evolutionary biology to understand how integrating these disciplines can help achieve the sustainable future envisioned by the UN SDGs.

7.
Nature ; 445(7129): 757-60, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17301791

RESUMO

One of the biggest challenges for conservation biology is to provide conservation planners with ways to prioritize effort. Much attention has been focused on biodiversity hotspots. However, the conservation of evolutionary process is now also acknowledged as a priority in the face of global change. Phylogenetic diversity (PD) is a biodiversity index that measures the length of evolutionary pathways that connect a given set of taxa. PD therefore identifies sets of taxa that maximize the accumulation of 'feature diversity'. Recent studies, however, concluded that taxon richness is a good surrogate for PD. Here we show taxon richness to be decoupled from PD, using a biome-wide phylogenetic analysis of the flora of an undisputed biodiversity hotspot--the Cape of South Africa. We demonstrate that this decoupling has real-world importance for conservation planning. Finally, using a database of medicinal and economic plant use, we demonstrate that PD protection is the best strategy for preserving feature diversity in the Cape. We should be able to use PD to identify those key regions that maximize future options, both for the continuing evolution of life on Earth and for the benefit of society.


Assuntos
Biodiversidade , Evolução Biológica , Conservação dos Recursos Naturais/métodos , Fenômenos Fisiológicos Vegetais , Efeito Estufa , Dados de Sequência Molecular , Filogenia , Plantas/classificação , Plantas/genética , Plantas Medicinais/classificação , Plantas Medicinais/genética , Plantas Medicinais/fisiologia , Densidade Demográfica , África do Sul
8.
Nat Commun ; 12(1): 3694, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140481

RESUMO

Various prioritisation strategies have been developed to cope with accelerating biodiversity loss and limited conservation resources. These strategies could become more engaging for decision-makers if they reflected the positive effects conservation can have on future projected biodiversity, by targeting net positive outcomes in future projected biodiversity, rather than reflecting the negative consequences of further biodiversity losses only. Hoping to inform the post-2020 biodiversity framework, we here apply this approach of targeting net positive outcomes in future projected biodiversity to phylogenetic diversity (PD) to re-identify species and areas of interest for conserving global mammalian PD. We identify priority species/areas as those whose protection would maximise gains in future projected PD. We also identify loss-significant species/areas as those whose/where extinction(s) would maximise losses in future projected PD. We show that our priority species/areas differ from loss-significant species/areas. While our priority species are mostly similar to those identified by the EDGE of Existence Programme, our priority areas generally differ from previously-identified ones for global mammal conservation. We further highlight that these newly-identified species/areas of interest currently lack protection and offer some guidance for their future management.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Espécies em Perigo de Extinção , África Austral , Animais , Ásia Central , Sudeste Asiático , Evolução Biológica , Espécies em Perigo de Extinção/estatística & dados numéricos , Extinção Biológica , Madagáscar , Mamíferos , Filogenia
9.
Int J Mol Sci ; 10(11): 4723-4741, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20087461

RESUMO

The PD measure of phylogenetic diversity interprets branch lengths cladistically to make inferences about feature diversity. PD calculations extend conventional species-level ecological indices to the features level. The "phylogenetic beta diversity" framework developed by microbial ecologists calculates PD-dissimilarities between community localities. Interpretation of these PD-dissimilarities at the feature level explains the framework's success in producing ordinations revealing environmental gradients. An example gradients space using PD-dissimilarities illustrates how evolutionary features form unimodal response patterns to gradients. This features model supports new application of existing species-level methods that are robust to unimodal responses, plus novel applications relating to climate change, commercial products discovery, and community assembly.


Assuntos
Bactérias/classificação , Modelos Biológicos , Filogenia , Evolução Biológica , Fenômenos Ecológicos e Ambientais
10.
Conserv Biol ; 22(6): 1461-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18798854

RESUMO

New species conservation strategies, including the EDGE of Existence (EDGE) program, have expanded threatened species assessments by integrating information about species' phylogenetic distinctiveness. Distinctiveness has been measured through simple scores that assign shared credit among species for evolutionary heritage represented by the deeper phylogenetic branches. A species with a high score combined with a high extinction probability receives high priority for conservation efforts. Simple hypothetical scenarios for phylogenetic trees and extinction probabilities demonstrate how such scoring approaches can provide inefficient priorities for conservation. An existing probabilistic framework derived from the phylogenetic diversity measure (PD) properly captures the idea of shared responsibility for the persistence of evolutionary history. It avoids static scores, takes into account the status of close relatives through their extinction probabilities, and allows for the necessary updating of priorities in light of changes in species threat status. A hypothetical phylogenetic tree illustrates how changes in extinction probabilities of one or more species translate into changes in expected PD. The probabilistic PD framework provided a range of strategies that moved beyond expected PD to better consider worst-case PD losses. In another example, risk aversion gave higher priority to a conservation program that provided a smaller, but less risky, gain in expected PD. The EDGE program could continue to promote a list of top species conservation priorities through application of probabilistic PD and simple estimates of current extinction probability. The list might be a dynamic one, with all the priority scores updated as extinction probabilities change. Results of recent studies suggest that estimation of extinction probabilities derived from the red list criteria linked to changes in species range sizes may provide estimated probabilities for many different species. Probabilistic PD provides a framework for single-species assessment that is well-integrated with a broader measurement of impacts on PD owing to climate change and other factors.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Filogenia , Probabilidade , Medição de Risco , Especificidade da Espécie
11.
Evol Appl ; 10(2): 121-139, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28127389

RESUMO

Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolutionary processes, including responses to environmental change, the maintenance of species diversity, and ecological stability and resilience. At the same time, environmental changes associated with many human activities, such as land use and climate change, have dramatic and often negative impacts on intraspecific variation. We argue for the need for local, regional, and global programs to monitor intraspecific genetic variation. We suggest that such monitoring should include two main strategies: (i) intensive monitoring of multiple types of genetic variation in selected species and (ii) broad-brush modeling for representative species for predicting changes in variation as a function of changes in population size and range extent. Overall, we call for collaborative efforts to initiate the urgently needed monitoring of intraspecific variation.

12.
PLoS One ; 11(4): e0153565, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119149

RESUMO

Australia's Great Sandy Region is of international significance containing two World Heritage areas and patches of rainforest growing on white sand. Previous broad-scale analysis found the Great Sandy biogeographic subregion contained a significantly more phylogenetically even subset of species than expected by chance contrasting with rainforest on white sand in Peru. This study aimed to test the patterns of rainforest diversity and relatedness at a finer scale and to investigate why we may find different patterns of phylogenetic evenness compared with rainforests on white sands in other parts of the world. This study focussed on rainforest sites within the Great Sandy and surrounding areas in South East Queensland (SEQ), Australia. We undertook field collections, expanded our three-marker DNA barcode library of SEQ rainforest plants and updated the phylogeny to 95% of the SEQ rainforest flora. We sampled species composition of rainforest in fixed area plots from 100 sites. We calculated phylogenetic diversity (PD) measures as well as species richness (SR) for each rainforest community. These combined with site variables such as geology, were used to evaluate patterns and relatedness. We found that many rainforest communities in the Great Sandy area were significantly phylogenetically even at the individual site level consistent with a broader subregion analysis. Sites from adjacent areas were either not significant or were significantly phylogenetically clustered. Some results in the neighbouring areas were consistent with historic range expansions. In contrast with expectations, sites located on the oldest substrates had significantly lower phylogenetic diversity (PD). Fraser Island was once connected to mainland Australia, our results are consistent with a region geologically old enough to have continuously supported rainforest in refugia. The interface of tropical and temperate floras in part also explains the significant phylogenetic evenness and higher than expected phylogenetic diversity.


Assuntos
Biodiversidade , Plantas/classificação , Plantas/genética , Austrália , Sedimentos Geológicos/química , Peru , Filogenia , Floresta Úmida , Refúgio de Vida Selvagem , Clima Tropical
13.
Philos Trans R Soc Lond B Biol Sci ; 370(1662): 20140011, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25561672

RESUMO

The phylogenetic diversity measure, ('PD'), measures the relative feature diversity of different subsets of taxa from a phylogeny. At the level of feature diversity, PD supports the broad goal of biodiversity conservation to maintain living variation and option values. PD calculations at the level of lineages and features include those integrating probabilities of extinction, providing estimates of expected PD. This approach has known advantages over the evolutionarily distinct and globally endangered (EDGE) methods. Expected PD methods also have limitations. An alternative notion of expected diversity, expected functional trait diversity, relies on an alternative non-phylogenetic model and allows inferences of diversity at the level of functional traits. Expected PD also faces challenges in helping to address phylogenetic tipping points and worst-case PD losses. Expected PD may not choose conservation options that best avoid worst-case losses of long branches from the tree of life. We can expand the range of useful calculations based on expected PD, including methods for identifying phylogenetic key biodiversity areas.


Assuntos
Adaptação Biológica/fisiologia , Biodiversidade , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Modelos Biológicos , Filogenia , Adaptação Biológica/genética
14.
Philos Trans R Soc Lond B Biol Sci ; 370(1662): 20140002, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25561663

RESUMO

Evolutionary studies have played a fundamental role in our understanding of life, but until recently, they had only a relatively modest involvement in addressing conservation issues. The main goal of the present discussion meeting issue is to offer a platform to present the available methods allowing the integration of phylogenetic and extinction risk data in conservation planning. Here, we identify the main knowledge gaps in biodiversity science, which include incomplete sampling, reconstruction biases in phylogenetic analyses, partly known species distribution ranges, and the difficulty in producing conservation assessments for all known species, not to mention that much of the effective biological diversity remains to be discovered. Given the impact that human activities have on biodiversity and the urgency with which we need to address these issues, imperfect assumptions need to be sanctioned and surrogates used in the race to salvage as much as possible of our natural and evolutionary heritage. We discuss some aspects of the uncertainties found in biodiversity science, such as the ideal surrogates for biodiversity, the gaps in our knowledge and the numerous available phylogenetic diversity-based methods. We also introduce a series of cases studies that demonstrate how evolutionary biology can effectively contribute to biodiversity conservation science.


Assuntos
Distribuição Animal , Biodiversidade , Classificação/métodos , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Filogenia , Medição de Risco , Incerteza
15.
PLoS One ; 10(3): e0122164, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803607

RESUMO

Australian rainforests have been fragmented due to past climatic changes and more recently landscape change as a result of clearing for agriculture and urban spread. The subtropical rainforests of South Eastern Queensland are significantly more fragmented than the tropical World Heritage listed northern rainforests and are subject to much greater human population pressures. The Australian rainforest flora is relatively taxonomically rich at the family level, but less so at the species level. Current methods to assess biodiversity based on species numbers fail to adequately capture this richness at higher taxonomic levels. We developed a DNA barcode library for the SE Queensland rainforest flora to support a methodology for biodiversity assessment that incorporates both taxonomic diversity and phylogenetic relationships. We placed our SE Queensland phylogeny based on a three marker DNA barcode within a larger international rainforest barcode library and used this to calculate phylogenetic diversity (PD). We compared phylo- diversity measures, species composition and richness and ecosystem diversity of the SE Queensland rainforest estate to identify which bio subregions contain the greatest rainforest biodiversity, subregion relationships and their level of protection. We identified areas of highest conservation priority. Diversity was not correlated with rainforest area in SE Queensland subregions but PD was correlated with both the percent of the subregion occupied by rainforest and the diversity of regional ecosystems (RE) present. The patterns of species diversity and phylogenetic diversity suggest a strong influence of historical biogeography. Some subregions contain significantly more PD than expected by chance, consistent with the concept of refugia, while others were significantly phylogenetically clustered, consistent with recent range expansions.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Código de Barras de DNA Taxonômico/métodos , Filogenia , Floresta Úmida , Sequência de Bases , Análise por Conglomerados , Geografia , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia/métodos , Reação em Cadeia da Polimerase , Queensland , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Sci Total Environ ; 534: 131-43, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25976346

RESUMO

Phylodiversity measures summarise the phylogenetic diversity patterns of groups of organisms. By using branches of the tree of life, rather than its tips (e.g., species), phylodiversity measures provide important additional information about biodiversity that can improve conservation policy and outcomes. As a biodiverse nation with a strong legislative and policy framework, Australia provides an opportunity to use phylogenetic information to inform conservation decision-making. We explored the application of phylodiversity measures across Australia with a focus on two highly biodiverse regions, the south west of Western Australia (SWWA) and the South East Queensland bioregion (SEQ). We analysed seven diverse groups of organisms spanning five separate phyla on the evolutionary tree of life, the plant genera Acacia and Daviesia, mammals, hylid frogs, myobatrachid frogs, passerine birds, and camaenid land snails. We measured species richness, weighted species endemism (WE) and two phylodiversity measures, phylogenetic diversity (PD) and phylogenetic endemism (PE), as well as their respective complementarity scores (a measure of gains and losses) at 20 km resolution. Higher PD was identified within SEQ for all fauna groups, whereas more PD was found in SWWA for both plant groups. PD and PD complementarity were strongly correlated with species richness and species complementarity for most groups but less so for plants. PD and PE were found to complement traditional species-based measures for all groups studied: PD and PE follow similar spatial patterns to richness and WE, but highlighted different areas that would not be identified by conventional species-based biodiversity analyses alone. The application of phylodiversity measures, particularly the novel weighted complementary measures considered here, in conservation can enhance protection of the evolutionary history that contributes to present day biodiversity values of areas. Phylogenetic measures in conservation can include important elements of biodiversity in conservation planning, such as evolutionary potential and feature diversity that will improve decision-making and lead to better biodiversity conservation outcomes.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/legislação & jurisprudência , Política Ambiental , Plantas/classificação , Austrália , Conservação dos Recursos Naturais/métodos
17.
Cladistics ; 5(3): 235-258, 1989 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34933464

RESUMO

Abstract- A multivariatc model for taxa and characters is presented that represents taxa as points in an ordination space such that shared derived character states define groups of taxa or regions in this space. This model is compared, in terms of concepts of information content and explanatory power, to the eladistie model that relates characters and taxa to a hierarchical pattern. While a cladogram may be identified with a phylogenetic hypothesis, the ordination pattern may be equated with hypotheses about similarities among the taxa in habitat, feeding mode, or other ecological factors. This basic data-pattern model is appropriate for the explanation of the character convergences implied by a particular phylogenetic hypothesis. Under the assumptions of the model, the underlying ordination pattern may be inferred from the observed character data using robust ordination procedures recently developed in community ecology. As an illustration of the method, the morphological convergences derived from a recent phylogenetic hypothesis for genera of Anseriformes are analysed. In the resulting two-dimensional ordination, the genera are arranged such that the convergenlly derived states form regions in the space. While this pattern implies that some of the taxa that are close together in the space are phylogcnetically dissimilar, taxa that are close together in the space are found to be similar in their mode of feeding. Thus, the ordination demonstrates that taxa sharing these morphological convergences tend to utilize habitat in the same way in terms of mode of feeding. The explanatory power of the pattern and the degree of recovery of habitat information are tested against null hypotheses using Monte Carlo simulations. Extensions of the method are discussed, including applications to studies of parasite-host relationships and to biogeography.

18.
Oecologia ; 57(3): 287-290, 1983 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28309352

RESUMO

Asymmetry in binary data arises when one of the two states (e.g. state "1") is interpreted as more informative than the other state. A common example in ecology occurs when one state represents presence of some unit and the other state represents absence. The problem of the classification of individuals based upon a set of such characters is related to the goal of group homogeneity. The homogeneity of a group of individuals is defined as the count over all possible pairs of individuals and all characters, of the number of shared 1 states, minus the number of mismatches or 0-1, 1-0 combinations. The shared 0 states are effectively neutral, then, in terms of 1-state homogeneity.The behaviour of some common binary similarity measures is examined in relation to 1-state homogeneity. Although the Jaccard coefficient comes close to having the desired behaviour it exhibits undesirable behaviour for some data values and a proportionality relationship between matches and mismatches that may not always be desirable. A new coefficient, "C", is introduced which overcomes these problems and leads to homogeneous classifications in the sense described above. Further general recommendations are made for the use of these coefficients in various contexts.

19.
J Biosci ; 27(4 Suppl 2): 393-407, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12177537

RESUMO

Biodiversity conservation planning requires trade-offs, given the realities of limited resources and the competing demands of society. If net benefits for society are important, biodiversity assessment cannot occur without other sectoral factors "on the table". In trade-offs approaches, the biodiversity value of a given area is expressed in terms of the species or other components of biodiversity that it has that are additional to the components protected elsewhere. That "marginal gain" is called the complementarity value of the area. A recent whole-country planning study for Papua New Guinea illustrates the importance of complementarity-based trade-offs in determining priority areas for biodiversity conservation, and for designing economic instruments such as biodiversity levies and offsets. Two international biodiversity programs provide important new opportunities for biodiversity trade-offs taking complementarity into account. Both the Millennium Ecosystem Assessment and the Critical Ecosystems or "hotspots" programs can benefit from an explicit framework that incorporates trade-offs, in which a balance is achieved not only by land-use allocation among areas, but also by the crediting of partial protection of biodiversity provided by sympathetic management within areas. For both international programs, our trade-offs framework can provide a natural linkage between local, regional and global planning levels.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Animais , Conservação dos Recursos Naturais/economia , Custos e Análise de Custo , Geografia , Papua Nova Guiné
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA