Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(22): 14343-14351, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33125231

RESUMO

Microbially-mediated methylation of arsenic (As) plays an important role in the As biogeochemical cycle, particularly in rice paddy soils where methylated As, generated microbially, is translocated into rice grains. The presence of the arsenite (As(III)) methyltransferase gene (arsM) in soil microbes has been used as an indication of their capacity for As methylation. Here, we evaluate the ability of seven microorganisms encoding active ArsM enzymes to methylate As. Amongst those, only the aerobic species were efficient methylators. The anaerobic microorganisms presented high resistance to As exposure, presumably through their efficient As(III) efflux, but methylated As poorly. The only exception were methanogens, for which efficient As methylation was seemingly an artifact of membrane disruption. Deletion of an efflux pump gene (acr3) in one of the anaerobes, Clostridium pasteurianum, rendered the strain sensitive to As and capable of more efficiently methylating As. Our results led to the following conclusions: (i) encoding a functional ArsM enzyme does not guarantee that a microorganism will actively drive As methylation in the presence of the metalloid and (ii) there is an inverse relationship between efficient microbial As efflux and its methylation, because the former prevents the intracellular accumulation of As.


Assuntos
Arsênio , Poluentes do Solo , Anaerobiose , Clostridium , Metilação , Microbiologia do Solo
2.
Environ Sci Technol ; 51(18): 10546-10554, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28825798

RESUMO

Methylated arsenic (As) species represent a significant fraction of the As accumulating in rice grains, and there are geographic patterns in the abundance of methylated arsenic in rice that are not understood. The microorganisms driving As biomethylation in paddy environments, and thus the soil conditions conducive to the accumulation of methylated arsenic, are unknown. We tested the hypothesis that sulfate-reducing bacteria (SRB) are key drivers of arsenic methylation in metabolically versatile mixed anaerobic enrichments from a Mekong Delta paddy soil. We used molybdate and monofluorophosphate as inhibitors of sulfate reduction to evaluate the contribution of SRB to arsenic biomethylation, and developed degenerate primers for the amplification of arsM genes to identify methylating organisms. Enrichment cultures converted 63% of arsenite into methylated products, with dimethylarsinic acid as the major product. While molybdate inhibited As biomethylation, this effect was unrelated to its inhibition of sulfate reduction and instead inhibited the methylation pathway. Based on arsM sequences and the physiological response of cultures to media conditions, we propose that amino acid fermenting organisms are potential drivers of As methylation in the enrichments. The lack of a demethylating capacity may have contributed to the robust methylation efficiencies in this mixed culture.


Assuntos
Arsênio/química , Oryza , Poluentes do Solo/química , Metilação , Solo
3.
Ecol Evol ; 7(14): 5378-5388, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28770075

RESUMO

In many tropical regions, slash-and-burn agriculture is considered as a driver of deforestation; the forest is converted into agricultural land by cutting and burning the trees. However, the fields are abandoned after few years because of yield decrease and weed invasion. Consequently, new surfaces are regularly cleared from the primary forest. We propose a reclamation strategy for abandoned fields allowing and sustaining re-cultivation. In the dry region of south-western Madagascar, we tested, according to a split-plot design, an alternative selective slash-and-burn cultivation technique coupled with compost amendment on 30-year-old abandoned fields. Corn plants (Zea mays L.) were grown on four different types of soil amendments: no amendment (control), compost, ashes (as in traditional slash-and-burn cultivation), and compost + ashes additions. Furthermore, two tree cover treatments were applied: 0% tree cover (as in traditional slash-and-burn cultivation) and 50% tree cover (selective slash-and-burn). Both corn growth and soil fertility parameters were monitored during the growing season 2015 up to final harvest. The amendment compost + ashes strongly increased corn yield, which was multiplied by 4-5 in comparison with ashes or compost alone, reaching 1.5 t/ha compared to 0.25 and 0.35 t/ha for ashes and compost, respectively. On control plots, yield was negligible as expected on these degraded soils. Structural equation modeling evidenced that compost and ashes were complementary fertilizing pathways promoting soil fertility through positive effects on soil moisture, pH, organic matter, and microbial activity. Concerning the tree cover treatment, yield was reduced on shaded plots (50% tree cover) compared to sunny plots (0% tree cover) for all soil amendments, except ashes. To conclude, our results provide empirical evidence on the potential of recultivating tropical degraded soils with compost and ashes. This would help mitigating deforestation of the primary forest by increasing lifespan of agricultural lands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA