Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(22): 9658-9668, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768036

RESUMO

Manure application is a global approach for enhancing soil organic carbon (SOC) sequestration. However, the response of SOC decomposition in manure-applied soil to abrupt warming, often occurring during diurnal temperature fluctuations, remains poorly understood. We examined the effects of long-term (23 years) continuous application of manure on SOC chemical composition, soil respiration, and microbial communities under temperature shifts (15 vs 25 °C) in the presence of plant residues. Compared to soil without fertilizer, manure application reduced SOC recalcitrance indexes (i.e., aliphaticity and aromaticity) by 17.45 and 21.77%, and also reduced temperature sensitivity (Q10) of native SOC decomposition, plant residue decomposition, and priming effect by 12.98, 15.98, and 52.83%, respectively. The relative abundances of warm-stimulated chemoheterotrophic bacteria and fungi were lower in the manure-applied soil, whereas those of chemoautotrophic Thaumarchaeota were higher. In addition, the microbial network of the manure-applied soil was more interconnected, with more negative connections with the warm-stimulated taxa than soils without fertilizer or with chemical fertilizer applied. In conclusion, our study demonstrated that the reduced loss of SOC to abrupt warming by manure application arises from C chemistry modification, less warm-stimulated microorganisms, a more complex microbial community, and the higher CO2 intercepting capability by Thaumarchaeota.


Assuntos
Carbono , Esterco , Microbiota , Microbiologia do Solo , Solo , Solo/química , Fertilizantes , Temperatura
2.
Appl Microbiol Biotechnol ; 101(11): 4669-4681, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28188339

RESUMO

The association between microbial communities and plant growth in long-term fertilization system has not been fully studied. In the present study, impacts of long-term fertilization have been determined on the size and activity of soil microbial communities and wheat performance in a red soil (Ultisol) collected from Qiyang Experimental Station, China. For this, different microbial communities originating from long-term fertilized pig manure (M), mineral fertilizer (NPK), pig manure plus mineral fertilizer (MNPK), and no fertilizer (CK) were used as inocula for the Ultisol tested. Changes in total bacterial and fungal community composition and structures using Ion Torrent sequencing were determined. The results show that the biomass of wheat was significantly higher in both sterilized soil inoculated with NPK (SNPK) and sterilized soil inoculated with MNPK (SMNPK) treatments than in other treatments (P < 0.05). The activities of ß-1,4-N-acetylglucosaminidase (NAG) and cellobiohydrolase (CBH) were significantly correlated with wheat biomass. Among the microbial communities, the largest Ascomycota phylum in soils was negatively correlated with ß-1,4-glucosidase (ßG) (P < 0.05). The phylum Basidiomycota was negatively correlated with plant biomass (PB) and tillers per plant (TI) (P < 0.05). Nonmetric multidimensional scaling analysis shows that fungal community was strongly correlated with long-term fertilization strategy, while the bacterial community was strongly correlated with ß-1,4-N-acetylglucosaminidase activity. According to the Mantel test, the growth of wheat was affected by fungal community. Taken together, microbial composition and diversity in soils could be a good player in predicting soil fertility and consequently plant growth.


Assuntos
Fertilizantes , Variação Genética , Consórcios Microbianos/efeitos dos fármacos , Microbiologia do Solo , Solo/química , Triticum/crescimento & desenvolvimento , Animais , Ascomicetos/enzimologia , Ascomicetos/genética , Basidiomycota/genética , Biomassa , Esterco , Consórcios Microbianos/genética , Minerais/farmacologia , Nitrogênio/farmacologia , Fósforo/farmacologia , Potássio/farmacologia , Suínos , Fatores de Tempo , Triticum/efeitos dos fármacos , Triticum/microbiologia
3.
Appl Microbiol Biotechnol ; 99(13): 5719-29, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25715781

RESUMO

Preferable inorganic fertilization over the last decades has led to fertility degradation of black soil in Northeast China. However, how fertilization regimes impact denitrification and its related bacterial community in this soil type is still unclear. Here, taking advantage of a suit of molecular ecological tools in combination of assaying the potential denitrification (DP), we explored the variation of activity, community structure, and abundance of nirS and nirK denitrifiers under four different fertilization regimes, namely no fertilization control (N0M0), organic pig manure (N0M1), inorganic fertilization (N1M0), and combination of inorganic fertilizer and pig manure (N1M1). The results indicated that organic fertilization increased DP, but inorganic fertilization had no impacts. The increase of DP was mirrored by the shift of nirS denitrifiers' community structure but not by that of nirK denitrifiers'. Furthermore, the change of DP coincided with the variation of abundances of both denitrifiers. Shifts of community structure and abundance of nirS and nirK denitrifiers were correlated with the change of soil pH, total nitrogen (TN), organic matter (OM), C:P, total phosphorus (TP), and available phosphorus (Olsen P). Our results suggest that the change of DP under these four fertilization regimes was closely related to the shift of denitrifying bacteria communities resulting from the variation of properties in the black soil tested.


Assuntos
Agricultura/métodos , Biota , Desnitrificação , Microbiologia do Solo , Animais , China , Fertilizantes , Esterco , Redes e Vias Metabólicas/genética , Nitrogênio/metabolismo , Suínos
4.
Appl Microbiol Biotechnol ; 99(23): 10311-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26266752

RESUMO

This study used an artificial enrichment microbial consortium to examine the effects of different substrate conditions on microbial diversity, composition, and function (e.g., zinc leaching efficiency) through adding pyrite (SP group), chalcopyrite (SC group), or both (SPC group) in sphalerite bioleaching systems. 16S rRNA gene sequencing analysis showed that microbial community structures and compositions dramatically changed with additions of pyrite or chalcopyrite during the sphalerite bioleaching process. Shannon diversity index showed a significantly increase in the SP (1.460), SC (1.476), and SPC (1.341) groups compared with control (sphalerite group, 0.624) on day 30, meanwhile, zinc leaching efficiencies were enhanced by about 13.4, 2.9, and 13.2%, respectively. Also, additions of pyrite or chalcopyrite could increase electric potential (ORP) and the concentrations of Fe3+ and H+, which were the main factors shaping microbial community structures by Mantel test analysis. Linear regression analysis showed that ORP, Fe3+ concentration, and pH were significantly correlated to zinc leaching efficiency and microbial diversity. In addition, we found that leaching efficiency showed a positive and significant relationship with microbial diversity. In conclusion, our results showed that the complicated substrates could significantly enhance microbial diversity and activity of function.


Assuntos
Consórcios Microbianos , Sulfetos/metabolismo , Compostos de Zinco/metabolismo , Zinco/metabolismo , Biotransformação , Fenômenos Químicos , Análise por Conglomerados , Cobre/metabolismo , DNA Ribossômico/química , DNA Ribossômico/genética , Microbiologia Ambiental , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Sci Total Environ ; 862: 160648, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502980

RESUMO

As a potent greenhouse gas, soil nitrous oxide (N2O) is strongly stimulated by rising temperature, triggering a positive feedback effect of global warming. However, its temperature sensitivity varies greatly among soils with different physical and chemical characteristics, while associated mechanisms remain unknown. Here we performed a meta-analysis of the effect of warming on N2O emission and found distinctions in the response of N2O to temperature increase in soils with different textures. Then, we conducted an incubation experiment on 11 arable soils with varying textures sampled across China. The results show that the temperature sensitivity of N2O emissions was lower as soil texture became more clayey and was consistent with the outcome of meta-analysis. Further analysis was conducted by classifying the soils into clay and loam subgroups. As shown in the clay soil subgroup, N2O emission was significantly correlated with both inorganic nitrogen contents and potential denitrification and nitrification activities. Correlation analysis and partial least square (PLS) path model revealed that temperature mediated N2O emission by regulating nosZ gene abundance indirectly. In loam soils, however, the indirect effect of temperature on N2O production was achieved mainly through nirS gene abundance. Additionally, soil DON content strongly correlated with N2O emission in both subgroups and affected N2O emissions by influencing the abundance of denitrifiers under warming conditions. Our findings suggest that (i) soil texture was an important factor affecting temperature sensitivity of N2O emission and (ii) variable efficacy of warming in soil N2O production might originate from the enriching DON and nitrate content and its different indirect effects on nirS- or nosZ-type denitrifiers.


Assuntos
Nitrificação , Solo , Solo/química , Argila , Temperatura , Óxido Nitroso/análise , Microbiologia do Solo , Desnitrificação
6.
Sci Total Environ ; 863: 160704, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36481142

RESUMO

Rare earth elements (REE) are extensively exploited in the agricultural ecosystems due to their various beneficial roles on plant growth. However, the ecotoxicological effects and environmental risk of REE are poorly assessed. Here, we investigated the effects of lanthanum and cerium nitrate on soil prokaryote and viral metal resistance genes (MRGs) and antibiotics resistance genes (ARGs) using a metagenomic-based approach. We found that relative abundances of prokaryote phyla Bacteroidetes and Chloroflexi decreased with increasing of both REE compounds. In addition, low level REE nitrate (0.05 and 0.1 mmol kg-1 soil) inhibited the viral family Phycodanaviridae, Rudiviridae, Schitoviridae, whereas high level (0.16 and 0.32 mmol kg-1 soil) REE nitrate suppressed the viral family Herelleviridae, Iridoviridae, Podoviridae. ARGs were not significantly affected by low level of REE nitrate. However, high level of both REEs nitrate increased the abundances of dominant prokaryote genes resisting to most of the drug classes, such as aminoglycoside, elfamycin, fluoroquinolone, macrolide, rifamycin. Abundance of MRGs in prokaryote did not change consistently with REE nitrate compound type and input rate. MRGs were only partially detected in the virome in some of the treatments, while ARGs was not detected in virome. Together, we demonstrated that overuse of REE nitrate in agriculture would increase the risk of dissemination of ARGs through prokaryotes but not virus, although viral community was substantially shifted.


Assuntos
Antibacterianos , Metais Terras Raras , Antibacterianos/toxicidade , Viroma , Nitratos , Ecossistema , Metais , Genes Bacterianos , Solo , Metagenômica
7.
Front Microbiol ; 14: 1161983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275141

RESUMO

Microbial diversity is an important indicator of soil fertility and plays an indispensable role in farmland ecosystem sustainability. The short-term effects of fertilization and rhizobium inoculation on soil microbial diversity and community structure have been explored extensively; however, few studies have evaluated their long-term effects. Here, we applied quantitative polymerase chain reaction (qPCR) and amplicon sequencing to characterize the effect of 10-year fertilizer and rhizobium inoculation on bacterial communities in soybean bulk and rhizosphere soils at the flowering-podding and maturity stages. Four treatments were examined: non-fertilization control (CK), phosphorus and potassium fertilization (PK), nitrogen and PK fertilization (PK + N), and PK fertilization and Bradyrhizobium japonicum 5821 (PK + R). Long-term co-application of rhizobium and PK promoted soybean nodule dry weight by 33.94% compared with PK + N, and increased soybean yield by average of 32.25%, 5.90%, and 5.00% compared with CK, PK, and PK + N, respectively. The pH of PK + R was significantly higher than that of PK and PK + N at the flowering-podding stage. The bacterial abundance at the flowering-podding stage was positively correlated with soybean yield, but not at the maturity stage. The significant different class Gemmatimonadetes, and the genera Gemmatimonas, and Ellin6067 in soil at the flowering-podding stage were negatively correlated with soybean yield. However, the bacterial community at class and genus levels at maturity had no significant effect on soybean yield. The key bacterial communities that determine soybean yield were concentrated in the flowering-podding stage, not at maturity stage. Rhizosphere effect, growth period, and treatment synergies resulted in significant differences in soil bacterial community composition. Soil organic matter (OM), total nitrogen (TN), pH, and available phosphorus (AP) were the main variables affecting bacterial community structure. Overall, long-term co-application of rhizobium and fertilizer not only increased soybean yield, but also altered soil bacterial community structure through niche reconstruction and microbial interaction. Rhizobium inoculation plays key role in reducing nitrogen fertilizer application and promoting sustainable agriculture practices.

8.
Sci Total Environ ; 845: 157279, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35830916

RESUMO

Microbial immobilization of fertilizer nitrogen (N) can effectively reduce N losses in soil. However, the effects of crop residue on microbial assimilation of fertilizer-N and the underlying microbial mechanisms in upland soils are unclear. We evaluated the influence of maize residue (13C) addition on the microbial assimilation of ammonium-N (15N) in DNA from fertilizer, and quantified the bacterial 13C or 15N assimilation by quantitative stable isotope probing (DNA-qSIP). We found that the straw addition did increase total microbial assimilation of ammonium from fertilizer during the 2-week incubation. However, bacterial taxa varied in their responses to straw addition: Bacteriodetes and Proteobacteria accounted for large fractions of ammonium assimilation and their N assimilations were increased, while N assimilations of Acidobacteria were decreased. We revealed that highly 13C-labeled taxa were the main contributors of N assimilation under straw addition. The straw primarily enhanced the contributions of bacterial taxa to ammonium assimilation through increasing the extent of N assimilation, or enhancing the abundance of the N-assimilating bacterial taxa. Overall, our study elucidated an interaction between microbial assimilation of fertilizer-N and straw-C, showing a close element coupling of the keystone functional microbial taxa in N immobilization driven by organic carbon.


Assuntos
Compostos de Amônio , Fertilizantes , Bactérias , Carbono , DNA , Fertilizantes/análise , Nitrogênio/análise , Solo/química , Microbiologia do Solo
9.
Sci Total Environ ; 842: 156814, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732237

RESUMO

Lignin and cellulose are the most important component of crop straw entering arable soil. The decomposition of lignin and cellulose are related to carbon sequestration and soil fertility. The keystone microbes decomposing lignin and cellulose in cropland and their impact on agricultural management, however, remains largely unclear. In this study, we traced the carbon (C) from highly enriched 13C-labeled (atom% 13C = 99 %) lignin and cellulose to functional keystone microbes in soils of a 26-year fertilization field experiment with stable isotope probing (SIP). 13C-cellulose and 13C-lignin decomposition were significantly accelerated with the long-term application of fertilization, especially with the combination of organic and chemical fertilization (NPKM). The 13C was mainly assimilated by bacteria Acidobacteria (i.e. GP1, GP3, GP6), Proteobacteria (i.e. unidentified gamaproteobactiera, Bradyrhizobium), and fungi Ascomycota (i.e. Talaromyces and Fusarium, etc.). The keystone bacteria taxa decomposing cellulose and lignin were large overlapped, but substantially shaped by fertilization. For instance, GP3 was the dominant bacterium that decomposed both cellulose and lignin in no fertilizer control (CK), while GP1 and GP6 were the ones in chemical fertilization (NPK) and NPKM, respectively. The decomposition rates of cellulose in different fertilizations were majorly predicted by soil total phosphorus (TP), functional fungi abundance, total nitrogen (TN), whereas functional bacterial and fungal abundance, TP, and community structure of functional fungi manipulated the decomposing rate of lignin. Together, we demonstrate that keystone functional microbes decomposing cellulose and lignin were largely concurring and significantly altered by long-term resources enrichment, which drives the similar patterns of decomposition rates of these two substrates along the resource enrichment gradient.


Assuntos
Lignina , Microbiologia do Solo , Bactérias , Celulose , Fertilizantes/análise , Nitrogênio/análise , Fósforo , Solo/química
10.
Microb Ecol ; 62(4): 982-90, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21713434

RESUMO

The microbiology underpinning soil nitrogen cycling in northeast China remains poorly understood. These agricultural systems are typified by widely contrasting temperature, ranging from -40 to 38°C. In a long-term site in this region, the impacts of mineral and organic fertilizer amendments on potential nitrification rate (PNR) were determined. PNR was found to be suppressed by long-term mineral fertilizer treatment but enhanced by manure treatment. The abundance and structure of ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities were assessed using quantitative polymerase chain reaction and denaturing gradient gel electrophoresis techniques. The abundance of AOA was reduced by all fertilizer treatments, while the opposite response was measured for AOB, leading to a six- to 60-fold reduction in AOA/AOB ratio. The community structure of AOA exhibited little variation across fertilization treatments, whereas the structure of the AOB community was highly responsive. PNR was correlated with community structure of AOB rather than that of AOA. Variation in the community structure of AOB was linked to soil pH, total carbon, and nitrogen contents induced by different long-term fertilization regimes. The results suggest that manure amendment establishes conditions which select for an AOB community type which recovers mineral fertilizer-suppressed soil nitrification.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Clima Frio , Fertilizantes , Nitrificação , Microbiologia do Solo , Amônia/metabolismo , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , China , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Genes Arqueais , Genes Bacterianos , Oxirredutases/genética , Solo/análise
11.
Front Microbiol ; 12: 679793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276613

RESUMO

The turnover of microbial biomass plays an important part in providing a significant source of carbon (C) to soil organic C. However, whether the decomposition of microbial necromass (non-living microbial biomass) in the soil varies at the individual taxa level remains largely unknown. To fill up these gaps, we compared the necromass decomposition of bacterial and archaeal taxa by separating live microbial biomass with 18O-stable isotope probing from dead microbial biomass in soil. Our results showed that most of the microbial necromass at the operational taxonomic unit level (88.51%), which mainly belong to Acidobacteria, Actinobacteria, Gemmatimonadetes, and Proteobacteria, decomposed significantly after 30 days. In addition, there were great variations in necromass decomposition within each phylum, such as the decomposition of operational taxonomic units in Proteobacteria that ranged from 51% (Beijerinckia) to 92% (Nitrosospira). More importantly, the necromass decomposition was not related to the chemical composition of the cell wall but might positively correlate with the guanine-cytosine content of DNA and negatively correlated with genome size. This study provided a new insight that the decomposition of microbial necromass in soil was divergent at the individual taxonomic level and could not be fully explained by previously proposed mechanisms.

12.
Sci Total Environ ; 796: 148797, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273835

RESUMO

Soil amendments of black bone (BB), biochar (BC), silicon fertilizer (SI), and leaf fertilizer (LF) play vital roles in decreasing cadmium (Cd) availability, thereby supporting healthy plant growth and food security in agroecosystems. However, the effect of their additions on soil microbial community and the resulting soil Cd bioavailability, plant Cd uptake and health growth are still unknown. Therefore, in this study, BB, BC, SI, and LF were selected to evaluate Cd amelioration in wheat grown in Cd-contaminated soils. The results showed that relative to the control, all amendments significantly decreased both soil Cd bioavailability and its uptake in plant tissues, promoting healthy wheat growth and yield. This induced-decrease effect in seeds was the most obvious, wherein the effect was the highest in SI (52.54%), followed by LF (43.31%), and lowest in BC (35.24%) and BB (31.98%). Moreover, the induced decrease in soil Cd bioavailability was the highest in SI (29.56%), followed by BC (28.85%), lowest in LF (17.55%), and BB (15.30%). The significant effect in SI likely resulted from a significant increase in both the soil bioavailable Si and microbial community (Acidobacteria and Thaumarchaeota), which significantly decreased soil Cd bioavailability towards plant roots. In particular, a co-occurrence network analysis indicated that soil microbes played a substantial role in wheat yield under Si amendment. Therefore, supplying Si alters the soil microbial community, positively and significantly interacting with soil bioavailable Si and decreasing Cd bioavailability in soils, thereby sustaining healthy crop development and food quality.


Assuntos
Microbiota , Oryza , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Cádmio/toxicidade , Carvão Vegetal , Promoção da Saúde , Silício , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Triticum
13.
Microbiome ; 8(1): 84, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503635

RESUMO

BACKGROUND: In a warmer world, microbial decomposition of previously frozen organic carbon (C) is one of the most likely positive climate feedbacks of permafrost regions to the atmosphere. However, mechanistic understanding of microbial mediation on chemically recalcitrant C instability is limited; thus, it is crucial to identify and evaluate active decomposers of chemically recalcitrant C, which is essential for predicting C-cycle feedbacks and their relative strength of influence on climate change. Using stable isotope probing of the active layer of Arctic tundra soils after depleting soil labile C through a 975-day laboratory incubation, the identity of microbial decomposers of lignin and, their responses to warming were revealed. RESULTS: The ß-Proteobacteria genus Burkholderia accounted for 95.1% of total abundance of potential lignin decomposers. Consistently, Burkholderia isolated from our tundra soils could grow with lignin as the sole C source. A 2.2 °C increase of warming considerably increased total abundance and functional capacities of all potential lignin decomposers. In addition to Burkholderia, α-Proteobacteria capable of lignin decomposition (e.g. Bradyrhizobium and Methylobacterium genera) were stimulated by warming by 82-fold. Those community changes collectively doubled the priming effect, i.e., decomposition of existing C after fresh C input to soil. Consequently, warming aggravates soil C instability, as verified by microbially enabled climate-C modeling. CONCLUSIONS: Our findings are alarming, which demonstrate that accelerated C decomposition under warming conditions will make tundra soils a larger biospheric C source than anticipated. Video Abstract.


Assuntos
Lignina , Proteobactérias , Microbiologia do Solo , Alaska , Burkholderia/metabolismo , Mudança Climática , Temperatura Alta , Lignina/metabolismo , Pergelissolo , Proteobactérias/metabolismo , Solo/química , Tundra
14.
Sci Rep ; 8(1): 1546, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367671

RESUMO

The legacy effects of previous land use and climate history may affect current soil function. However, the manner in which these legacy effects of land use are modulated by the subsequent climate remains unclear. For this reason, we investigated how the legacies of soil multiple functions left by conversion of grassland to agricultural management were mediated by climate warming with a reciprocal transplant approach. The overall legacy was further separated into the contributions by changes in the abiotic properties of the soil (abiotic process) and microbial community (biotic process). We here hypothesized that warming may mediate the legacy effects of previous land use, mainly by changing biotic processes. Results indicated that warming significantly influenced the total legacies of soil respiration and three exoenzyme activities representing recalcitrant carbon, nitrogen, and phosphorus cycling, but did not affect the total legacy of ß-1,4-glucosidase activity, which is involved in labile carbon cycling. The relative contributions of abiotic and biotic processes to the warming effects on the total legacy depended on the type of soil function. The effects of warming on land use change legacies were derived from altered bacterial community structure. The results of the present study suggest that climate conditions could interact with land use legacy to determine the ecosystem functions in a process-specific way.

15.
Environ Microbiol Rep ; 8(5): 738-751, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27337207

RESUMO

Many studies have investigated the mechanisms underlying the survival and growth of certain organisms in extremely acidic environments known to be harmful to most prokaryotes and eukaryotes. Acidithiobacillus and Leptospirillum spp. are dominant bioleaching bacteria widely used in bioleaching systems, which are characterized by extremely acidic environments. To survive and grow in such settings, these acidophiles utilize shared molecular mechanisms that allow life in extreme conditions. In this review, we have summarized the results of published genomic analyses, which underscore the ability of iron- and/or sulfur-oxidizing autotrophic acidophiles belonging to the genera Acidithiobacillus and Leptospirillum to adapt to acidic environmental conditions. Several lines of evidence point at the metabolic diversity and multiplicity of pathways involved in the survival of these organisms. The ability to thrive in adverse environments requires versatile activation of structural and functional adaptive responses, including bacterial adhesion, motility, and resistance to heavy metals. We have highlighted recent developments centered on the key survival mechanisms employed by dominant extremophiles, and have laid the foundation for future studies focused on the ability of acidophiles to thrive in extremely acidic environments.

16.
Sci Rep ; 6: 24640, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27091552

RESUMO

Here we report for the first time that bacterial blight of rice can be alleviated by silicon (Si) added. In both inoculated and uninoculated plants, shoot dry weight was significantly higher in the +Si plants than in the -Si plants. A soil-cultured trial showed that disease severity was 24.3% lower in the Si-amended plants than in the non-Si-amended plants. Plants that were switched from -Si to +Si nutrient solution and simultaneously inoculated with Xoo also exhibited the same high resistance to bacterial blight as the plants that were treated continuously with Si, with control efficiencies of 52.8 and 62.9%, respectively. Moreover, total concentrations of soluble phenolics and lignin in rice leaves were significantly higher in the +Si plants than in the -Si plants. Polyphenoloxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities in rice leaves were observed to be higher in the +Si plants than in the -Si plants. The expression levels of Os03g0109600, Prla, Rcht2 and Lox2osPil, were also higher in +Si plants than in -Si plants post-inoculation during the experimental time. Addition of Si resulted in increased Pal transcription, and inhibited CatA and Os03g0126000 expression in the earlier and later stages of bacterial inoculation, respectively.


Assuntos
Resistência a Medicamentos/efeitos dos fármacos , Oryza/microbiologia , Silício/farmacologia , Oligoelementos/farmacologia , Catalase/metabolismo , Catecol Oxidase/metabolismo , Lignina/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Silício/metabolismo , Oligoelementos/metabolismo , Xanthomonas/patogenicidade
17.
Sci Total Environ ; 569-570: 1390-1401, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27450250

RESUMO

To evaluate long-term effect of biochar application on yield-scaled greenhouse gas emissions (YSGE) in a paddy rice cropping system, a 4-year field experiment by static chamber - gas chromatograph method was conducted in South China. Principal component analysis and terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR was used to unravel the microbial mechanisms of biochar addition. Six treatments were included: control (CK), application of 5tha(-1) biochar (BC1), application of 10tha(-1) biochar (BC2), application of 10tha(-1) biochar (BC3), rice straw return at 2400kgha(-1)(RS) and inoculated rice straw return at 2400kgha(-1)(RI). The results indicated that biochar amendment significantly decreased methane (CH4) and gross greenhouse gas (GHG) emissions. This may primarily be ascribed to the stimulated biodiversity and abundance of methanotrophic microbes, increased soil pH and improved aeration by reducing bulk density after biochar incorporation. Compared with CK, RS and RI, 26.18%, 70.02%, 66.47% of CH4 flux and 26.14%, 70.16%, 66.46% of gross GHG emissions were reduced by biochar (mean of three biochar treatments), respectively. Furthermore, biochar significantly increased harvest index of double rice production (p<0.05). In comparison with CK, RS and RI, 29.14%, 68.04%, 62.28% of YSGE was reduced by biochar, respectively, and the highest biochar addition rate (20tha(-1)) contributed most to the mitigation of GHG emissions (36.24% decrease compared to CK) and improvement of rice yield (7.65% increase compared to CK). Results of our study suggested that long-term application of biochar should be the potential way to mitigate GHGs emissions and simultaneously improve rice productivity in the paddy rice system.

18.
Syst Appl Microbiol ; 39(8): 493-502, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27712915

RESUMO

Members of the Acidithiobacillus genus are widely found in extreme environments characterized by low pH and high concentrations of toxic substances, thus it is necessary to identify the cellular mechanisms needed to cope with these harsh conditions. Pan-genome analysis of ten bacteria belonging to the genus Acidithiobacillus suggested the existence of core genome, most of which were assigned to the metabolism-associated genes. Additionally, the unique genes of Acidithiobacillus ferrooxidans were much less than those of other species. A large proportion of Acidithiobacillus ferrivorans-specific genes were mapped especially to metabolism-related genes, indicating that diverse metabolic pathways might confer an advantage for adaptation to local environmental conditions. Analyses of functional metabolisms revealed the differences of carbon metabolism, nitrogen metabolism, and sulfur metabolism at the species and/or strain level. The findings also showed that Acidithiobacillus spp. harbored specific adaptive mechanisms for thriving under extreme environments. The genus Acidithiobacillus had the genetic potential to resist and metabolize toxic substances such as heavy metals and organic solvents. Comparison across species and/or strains of Acidithiobacillus populations provided a deeper appreciation of metabolic differences and environmental adaptation, as well as highlighting the importance of cellular mechanisms that maintain the basal physiological functions under complex acidic environmental conditions.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Adaptação Fisiológica/genética , Carbono/metabolismo , Redes e Vias Metabólicas/genética , Nitrogênio/metabolismo , Enxofre/metabolismo , Acidithiobacillus/classificação , Genoma Bacteriano/genética , Genômica , Concentração de Íons de Hidrogênio , Metais Pesados/metabolismo
19.
Front Microbiol ; 7: 1960, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999570

RESUMO

Acidithiobacillus caldus is an extremely acidophilic sulfur-oxidizer with specialized characteristics, such as tolerance to low pH and heavy metal resistance. To gain novel insights into its genetic complexity, we chosen six A. caldus strains for comparative survey. All strains analyzed in this study differ in geographic origins as well as in ecological preferences. Based on phylogenomic analysis, we clustered the six A. caldus strains isolated from various ecological niches into two groups: group 1 strains with smaller genomes and group 2 strains with larger genomes. We found no obvious intraspecific divergence with respect to predicted genes that are related to central metabolism and stress management strategies between these two groups. Although numerous highly homogeneous genes were observed, high genetic diversity was also detected. Preliminary inspection provided a first glimpse of the potential correlation between intraspecific diversity at the genome level and environmental variation, especially geochemical conditions. Evolutionary genetic analyses further showed evidence that the difference in environmental conditions might be a crucial factor to drive the divergent evolution of A. caldus species. We identified a diverse pool of mobile genetic elements including insertion sequences and genomic islands, which suggests a high frequency of genetic exchange in these harsh habitats. Comprehensive analysis revealed that gene gains and losses were both dominant evolutionary forces that directed the genomic diversification of A. caldus species. For instance, horizontal gene transfer and gene duplication events in group 2 strains might contribute to an increase in microbial DNA content and novel functions. Moreover, genomes undergo extensive changes in group 1 strains such as removal of potential non-functional DNA, which results in the formation of compact and streamlined genomes. Taken together, the findings presented herein show highly frequent gene turnover of A. caldus species that inhabit extremely acidic environments, and shed new light on the contribution of gene turnover to the evolutionary adaptation of acidophiles.

20.
Sci Rep ; 5: 17354, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26621377

RESUMO

Rice is a typical silicon-accumulating plant. Silicon (Si), deposited as phytoliths during plant growth, has been shown to occlude organic carbon, which may prove to have significant effects on the biogeochemical sequestration of atmospheric CO2. This study evaluated the effects of silicate fertilization on plant Si uptake and carbon bio-sequestration in field trials on China's paddy soils. The results showed (1) Increased Si concentrations in rice straw with increasing application rates of silicate fertilizer; (2) Strong positive correlations between phytolith contents and straw SiO2 contents and between phytolith contents and phytolith-occluded carbon (PhytOC) contents in rice straw; (3) Positive correlations between the phytolith production flux and either the above-ground net primary productivity (ANPP) or the PhytOC production rates; (4) Increased plant PhytOC storage with increasing application rates of silicate fertilizer. The average above-ground PhytOC production rates during China's rice production are estimated at 0.94 × 10(6) tonnes CO2 yr(-1) without silicate fertilizer additions. However, the potential exists to increase PhytOC levels to 1.16-2.17 × 10(6) tonnes CO2 yr(-1) with silicate fertilizer additions. Therefore, providing silicate fertilizer during rice production may serve as an effective tool in improving atmospheric CO2 sequestration in global rice production areas.


Assuntos
Carbono/metabolismo , Fertilizantes , Oryza/crescimento & desenvolvimento , Silicatos/farmacologia , Dióxido de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA