Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Plant Cell ; 35(6): 2006-2026, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36808553

RESUMO

Arbuscular mycorrhizal (AM) symbiosis is a widespread, ancient mutualistic association between plants and fungi, and facilitates nutrient uptake into plants. Cell surface receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) play pivotal roles in transmembrane signaling, while few RLCKs are known to function in AM symbiosis. Here, we show that 27 out of 40 AM-induced kinases (AMKs) are transcriptionally upregulated by key AM transcription factors in Lotus japonicus. Nine AMKs are only conserved in AM-host lineages, among which the SPARK-RLK-encoding gene KINASE3 (KIN3) and the RLCK paralogues AMK8 and AMK24 are required for AM symbiosis. KIN3 expression is directly regulated by the AP2 transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), which regulates the reciprocal exchange of nutrients in AM symbiosis, via the AW-box motif in the KIN3 promoter. Loss of function mutations in KIN3, AMK8, or AMK24 result in reduced mycorrhizal colonization in L. japonicus. AMK8 and AMK24 physically interact with KIN3. KIN3 and AMK24 are active kinases and AMK24 directly phosphorylates KIN3 in vitro. Moreover, CRISPR-Cas9-mediated mutagenesis of OsRLCK171, the sole homolog of AMK8 and AMK24 in rice (Oryza sativa), leads to diminished mycorrhization with stunted arbuscules. Overall, our results reveal a crucial role of the CBX1-driven RLK/RLCK complex in the evolutionarily conserved signaling pathway enabling arbuscule formation.


Assuntos
Lotus , Micorrizas , Oryza , Humanos , Lotus/genética , Simbiose/genética , Transporte Biológico , Pesquisadores , Proteínas de Plantas/genética , Raízes de Plantas , Regulação da Expressão Gênica de Plantas/genética
2.
Small ; : e2312261, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733225

RESUMO

Myocardial infarction (MI) is a significant cardiovascular disease that restricts blood flow, resulting in massive cell death and leading to stiff and noncontractile fibrotic scar tissue formation. Recently, sustained oxygen release in the MI area has shown regeneration ability; however, improving its therapeutic efficiency for regenerative medicine remains challenging. Here, a combinatorial strategy for cardiac repair by developing cardioprotective and oxygenating hybrid hydrogels that locally sustain the release of stromal cell-derived factor-1 alpha (SDF) and oxygen for simultaneous activation of neovascularization at the infarct area is presented. A sustained release of oxygen and SDF from injectable, mechanically robust, and tissue-adhesive silk-based hybrid hydrogels is achieved. Enhanced endothelialization under normoxia and anoxia is observed. Furthermore, there is a marked improvement in vascularization that leads to an increment in cardiomyocyte survival by ≈30% and a reduction of the fibrotic scar formation in an MI animal rodent model. Improved left ventricular systolic and diastolic functions by ≈10% and 20%, respectively, with a ≈25% higher ejection fraction on day 7 are also observed. Therefore, local delivery of therapeutic oxygenating and cardioprotective hydrogels demonstrates beneficial effects on cardiac functional recovery for reparative therapy.

3.
Mass Spectrom Rev ; 42(6): 2404-2425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35765846

RESUMO

Endogenous peptide hormones represent an essential class of biomolecules, which regulate cell-cell communications in diverse physiological processes of organisms. Mass spectrometry (MS) has been developed to be a powerful technology for identifying and quantifying peptides in a highly efficient manner. However, it is difficult to directly identify these peptide hormones due to their diverse characteristics, dynamic regulations, low abundance, and existence in a complicated biological matrix. Here, we summarize and discuss the roles of targeted and untargeted MS in discovering peptide hormones using bioassay-guided purification, bioinformatics screening, or the peptidomics-based approach. Although the peptidomics approach is expected to discover novel peptide hormones unbiasedly, only a limited number of successful cases have been reported. The critical challenges and corresponding measures for peptidomics from the steps of sample preparation, peptide extraction, and separation to the MS data acquisition and analysis are also discussed. We also identify emerging technologies and methods that can be integrated into the discovery platform toward the comprehensive study of endogenous peptide hormones.

4.
Opt Express ; 32(4): 6409-6422, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439344

RESUMO

In this paper, a novel laser spot tracking algorithm that incorporates the Kalman filter with the continuously adaptive Meanshift algorithm (Cam-Kalm) is proposed and employed in an underwater optical wireless communication (UOWC) system. Since the Kalman filter has the advantage of predicting the state information of the target spot based on its spatial motion features, the proposed algorithm can improve the accuracy and stability of the moving laser spot tracking. A 2 m optical wireless communication experimental system with auto-tracking based on a green laser diode (LD) is built to evaluate the tracking performance of different algorithms. Experimental results verify that the proposed algorithm outperforms conventional tracking algorithms in aspects of tracking accuracy, interference resistance, and response time. With the proposed Cam-Kalm algorithm, the experimental system can establish an effective communication link, while the maximum tracking speed is 20 mm/s given the forward-error-correction (FEC) threshold.

5.
Invest New Drugs ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916794

RESUMO

mTORC1/2 dual inhibitors may be more effective than mTORC1 inhibitor rapamycin. However, their metabolic impacts on colon cancer cells remain unexplored. We conducted a comparative analysis of the anti-proliferative effects of rapamycin and the novel OSI-027 in colon cancer cells HCT-116, evaluating their metabolic influences through ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Our results demonstrate that OSI-027 more effectively inhibits colon cancer cell proliferation than rapamycin. Additionally, we identified nearly 600 metabolites from the spectra, revealing significant differences in metabolic patterns between cells treated with OSI-027 and rapamycin. Through VIP value screening, we pinpointed crucial metabolites contributing to these distinctions. For inhibiting glycolysis and reducing glucose consumption, OSI-027 was likely to be more potent than rapamycin. For amino acids metabolism, although OSI-027 has a broad effect as rapamycin, their effects in degrees were not exactly the same. These findings address the knowledge gap regarding mTORC1/2 dual inhibitors and lay a foundation for their further development and research.

6.
Langmuir ; 40(24): 12681-12688, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38839051

RESUMO

Photocatalytic conversion of CO2 to hydrocarbon fuel is a potential strategy to solve energy shortage and mitigate the greenhouse effect. Here, direct Z-scheme heterojunction photocatalysts (In2O3/Bi2S3) without an electron mediator are prepared by a simple hydrolysis method. The In2O3/Bi2S3 composite photocatalysts show greatly boosted photoactivity on CO2 conversion to CO compared with the pristine In2O3 and Bi2S3. The highest CO evolution rate of 2.67 µmol·g-1·h-1 is achieved by In2O3/Bi2S3-3, without any sacrificial agent or cocatalyst, which is about 3.87 times that of In2O3 (0.69 µmol·g-1·h-1). The boosted photocatalytic performance of In2O3/Bi2S3 composite catalysts can be ascribed to the establishment of a Z-scheme heterojunction, improving the photoabsorption and facilitating charge separation and transfer. This study provides a reference for designing and fabricating high-efficiency Z-scheme heterojunction photocatalysts for photocatalytic CO2 reduction.

7.
Environ Res ; 258: 119406, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871277

RESUMO

To carry out the diagnosis and evaluation of the ecosystem health in Yuxi three-lake watershed, this paper presents the changing trend of its health state, and predicts the future development. This also provides ideas for maintaining the regional ecosystem health, and then gradually improves the ecological environment quality. Taking Fuxian Lake, Qilu Lake and Xingyun Lake (the three-lake watershed) in Yuxi City, Yunnan Province, Southwest China as the research object, a model combining pressure-state-response and kernel density estimation (PSR-KDE) adopts to diagnose and evaluate the ecosystem health of the "three lake" watershed from 2010 to 2020, and the distribution map of ecosystem health index has obtained by the evaluation indexes integration based on GIS spatial analysis. Hence, the evaluation results have visualized on the map. The results show that: The distribution of ecosystem health index in the study area was 0.1530-0.7045 in 2010, 0.2056-0.7512 in 2015, and 0.2248-0.7662 in 2020. 0.12% was in the pathological area in 2010. After 2015, the pathological condition of ecosystem health has completely solved, and the proportion of unhealthy ecosystems was 11.95% in 2010, 7.38% in 2015, and 5.97% in 2020. The ecosystem health index of the study region was 0.5523 in 2010, 0.5807 in 2015, and 0.5815 in 2020, it indicates that the ecosystem was in a sub-health state. From 2010 to 2020, the ecosystem health around Qilu Lake was the most worrying, followed by the northwest of Fuxian Lake and the northern and southern regions of Xingyun Lake. The ecosystem health of the three-lake watershed showed significant improvement from 2010 to 2020. The study ecosystem health assessment and early warning in the three-lake watershed is significant to the ecological environment protection and management of the plateau lake basin, the restoration of the territorial space ecology and the economic development of the surrounding area.

8.
Plant Cell Rep ; 43(1): 28, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177567

RESUMO

KEY MESSAGE: The weighted gene co-expression network analysis and antisense oligonucleotide-mediated transient gene silencing revealed that CsAAP6 plays an important role in amino acid transport during tea shoot development. Nitrogen transport from source to sink is crucial for tea shoot growth and quality formation. Amino acid represents the major transport form of reduced nitrogen in the phloem between source and sink, but the molecular mechanism of amino acid transport from source leaves to new shoots is not yet clear. Therefore, the composition of metabolites in phloem exudates collected by the EDTA-facilitated method was analyzed through widely targeted metabolomics. A total of 326 metabolites were identified in the phloem exudates with the richest variety of amino acids and their derivatives (93), accounting for approximately 39.13% of the total metabolites. Moreover, through targeted metabolomics, it was found that the content of glutamine, glutamic acid, and theanine was the most abundant, and gradually increased with the development of new shoots. Meanwhile, transcriptome analysis suggested that the expression of amino acid transport genes changed significantly. The WGCNA analysis identified that the expression levels of CsAVT1, CsLHTL8, and CsAAP6 genes located in the MEterquoise module were positively correlated with the content of amino acids such as glutamine, glutamic acid, and theanine in phloem exudates. Reducing the CsAAP6 in mature leaves resulted in a significant decrease in the content of glutamic acid, aspartic acid, alanine, leucine, asparagine, glutamine, and arginine in the phloem exudates, indicating that CsAAP6 played an important role in the source to sink transport of amino acids in the phloem. The research results will provide the theoretical basis and genetic resources for the improvement of nitrogen use efficiency and tea quality.


Assuntos
Aminoácidos , Glutamina , Aminoácidos/metabolismo , Glutamatos/metabolismo , Chá , Perfilação da Expressão Gênica , Nitrogênio/metabolismo
9.
J Nanobiotechnology ; 22(1): 389, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956645

RESUMO

BACKGROUND: Nanotechnology holds revolutionary potential in the field of agriculture, with zinc oxide nanoparticles (ZnO NPs) demonstrating advantages in promoting crop growth. Enhanced photosynthetic efficiency is closely linked to improved vigor and superior quality in tea plants, complemented by the beneficial role of phyllosphere microorganisms in maintaining plant health. However, the effects of ZnO NPs on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms have not been fully investigated. RESULTS: This study investigated the photosynthetic physiological parameters of tea plants under the influence of ZnO NPs, the content of key photosynthetic enzymes such as RubisCO, chlorophyll content, chlorophyll fluorescence parameters, transcriptomic and extensive targeted metabolomic profiles of leaves and new shoots, mineral element composition in these tissues, and the epiphytic and endophytic microbial communities within the phyllosphere. The results indicated that ZnO NPs could enhance the photosynthesis of tea plants, upregulate the expression of some genes related to photosynthesis, increase the accumulation of photosynthetic products, promote the development of new shoots, and alter the content of various mineral elements in the leaves and new shoots of tea plants. Furthermore, the application of ZnO NPs was observed to favorably influence the microbial community structure within the phyllosphere of tea plants. This shift in microbial community dynamics suggests a potential for ZnO NPs to contribute to plant health and productivity by modulating the phyllosphere microbiome. CONCLUSION: This study demonstrates that ZnO NPs have a positive impact on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms, which can improve the growth condition of tea plants. These findings provide new scientific evidence for the application of ZnO NPs in sustainable agricultural development and contribute to advancing research in nanobiotechnology aimed at enhancing crop yield and quality.


Assuntos
Camellia sinensis , Nanopartículas Metálicas , Microbiota , Fotossíntese , Folhas de Planta , Brotos de Planta , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Fotossíntese/efeitos dos fármacos , Camellia sinensis/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Folhas de Planta/microbiologia , Nanopartículas Metálicas/química , Clorofila/metabolismo , Nanopartículas/química
10.
Magn Reson Chem ; 62(8): 610-618, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38666325

RESUMO

The spin Hamiltonian parameters and defect structures are theoretically studied for the substitutional Mn2+ at the core of CdSe nanocrystals and in the bulk materials from the perturbation calculations of spin Hamiltonian parameters for trigonal tetrahedral 3d5 clusters. Both the crystal-field and charge transfer contributions are taken into account in the calculations from the cluster approach. The impurity-ligand bond angles are found to be about 1.84° larger and 0.10° smaller in the CdSe:Mn2+ nanocrystals and bulk materials, respectively, than those (≈109.37°) of the host Cd2+ sites. The quantitative criterion of occupation (at the core or surface) for Mn2+ in CdX (X = S, Se, Te) nanocrystals is presented for the first time based on the inequations of hyperfine structure constants (HSCs). This criterion is well supported by the experimental HSCs data of Mn2+ in CdX nanocrystals. The previous assignments of signals SI as Mn2+ at the core of CdS nanocrystals are renewed as Mn2+ at the surface based on the above criterion. The present studies would be helpful to achieve convenient determination of occupation for Mn2+ impurities in CdX semiconductor nanocrystals by means of spectral (e.g., HSCs) analysis.

11.
Ultrason Imaging ; : 1617346241259049, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38903053

RESUMO

Three-dimensional (3D) ultrasound imaging can be accomplished by reconstructing a sequence of two-dimensional (2D) ultrasound images. However, 2D ultrasound images usually suffer from low resolution in the elevation direction, thereby impacting the accuracy of 3D reconstructed results. The lateral resolution of 2D ultrasound is known to significantly exceed the elevation resolution. By combining scanning sequences acquired from orthogonal directions, the effects of poor elevation resolution can be mitigated through a composite reconstructing process. Moreover, capturing ultrasound images from multiple perspectives necessitates a precise probe positioning method with a wide angle of coverage. Optical tracking is popularly used for probe positioning for its high accuracy and environment-robustness. In this paper, a novel large-angle accurate optical positioning method is used for enhancing resolution in 3D ultrasound imaging through orthogonal-view scanning and composite reconstruction. Experiments on two phantoms proved that our method could significantly improve reconstruction accuracy in the elevation direction of the probe compared with single-angle parallel scanning. The results indicate that our method holds the potential to improve current 3D ultrasound imaging techniques.

12.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892074

RESUMO

Global warming poses a threat to plant survival, impacting growth and agricultural yield. Protein turnover, a critical regulatory mechanism balancing protein synthesis and degradation, is crucial for the cellular response to environmental changes. We investigated the effects of elevated temperature on proteome dynamics in Arabidopsis thaliana seedlings using 15N-stable isotope labeling and ultra-performance liquid chromatography-high resolution mass spectrometry, coupled with the ProteinTurnover algorithm. Analyzing different cellular fractions from plants grown under 22 °C and 30 °C growth conditions, we found significant changes in the turnover rates of 571 proteins, with a median 1.4-fold increase, indicating accelerated protein dynamics under thermal stress. Notably, soluble root fraction proteins exhibited smaller turnover changes, suggesting tissue-specific adaptations. Significant turnover alterations occurred with redox signaling, stress response, protein folding, secondary metabolism, and photorespiration, indicating complex responses enhancing plant thermal resilience. Conversely, proteins involved in carbohydrate metabolism and mitochondrial ATP synthesis showed minimal changes, highlighting their stability. This analysis highlights the intricate balance between proteome stability and adaptability, advancing our understanding of plant responses to heat stress and supporting the development of improved thermotolerant crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Marcação por Isótopo , Isótopos de Nitrogênio , Proteoma , Plântula , Arabidopsis/metabolismo , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Marcação por Isótopo/métodos , Isótopos de Nitrogênio/metabolismo , Proteoma/metabolismo , Algoritmos , Proteômica/métodos , Temperatura , Resposta ao Choque Térmico
13.
J Environ Manage ; 351: 119922, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150929

RESUMO

Layered double hydroxides (LDHs) have gained significant recognition for their facile synthesis and super-hydrophilic two-dimensional (2D) structure to fabricate antifouling membranes for oily wastewater separation. However, conventional PVDF membranes, due to their hydrophobic nature and inert matrix, often exhibit insufficient permeance and compatibility. In this study, a novel NiFe-LDH@MnO2/PVDF membrane was synthesized using ultrasonic, redox, and microwave-hydrothermal processes. This innovative approach cultivated grass-like NiFe-LDH@MnO2 nanoparticles within an inert PVDF matrix, promoting the growth of highly hydrophilic composites. The presence of NiFe-LDH@MnO2 resulted in pronounced enhancements in surface morphology, interfacial wettability, and oil rejection for the fabricated membrane. The optimal NiFe-LDH@MnO2/PVDF-2 membrane exhibited an extremely high pure water flux (1364 L m-2•h-1), and increased oil rejection (from 81.2% to 93.5%) without sacrificing water permeation compared to the original PVDF membrane. Additionally, the NiFe-LDH@MnO2/PVDF membrane demonstrated remarkable antifouling properties, evident by an exceptional fouling resistance ratio of 96.8% following slight water rinsing. Mechanistic insights into the enhanced antifouling performance were elucidated through a comparative "semi-immersion" investigation. The facile synthesis method, coupled with the improved membrane performance, highlights the potential application prospects of this hybrid membrane in emulsified oily wastewater treatment and environmental remediation.


Assuntos
Incrustação Biológica , Polímeros de Fluorcarboneto , Polivinil , Purificação da Água , Compostos de Manganês , Óxidos , Óleos , Água , Purificação da Água/métodos
14.
J Am Chem Soc ; 145(31): 17284-17291, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489934

RESUMO

Germanosilicate zeolites with various structures have been extensively synthesized, but the syntheses of corresponding zeolite structures in the absence of germanium species remain a challenge. One such example is an ITR zeolite structure, which is a twin of the ITH zeolite structure. Through the modification of a classic organic template for synthesizing ITH zeolites and thus designing a new organic template with high compatibility to ITR zeolite assisted by theoretical simulation, we, for the first time, show the Ge-free synthesis of an ITR structure including pure silica, aluminosilicate, and borosilicate ITR zeolites. These materials have high crystallinity, corresponding to an ITR content of more than 95%. In the methanol-to-propylene (MTP) reaction, the obtained aluminosilicate ITR zeolite exhibits excellent propylene selectivity and a long lifetime compared with conventional aluminosilicate ZSM-5 zeolite. The strategy for the design of organic templates might offer a new opportunity for rational syntheses of novel zeolites and, thus, the development of highly efficient zeolite catalysts in the future.

15.
BMC Immunol ; 24(1): 19, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430199

RESUMO

BACKGROUND: Allergen-specific immunotherapy (AIT) is a causative treatment in allergic rhinitis (AR), comprising long-term allergen administration and over three years of treatment. This study is carried out for revealing the mechanisms and key genes of AIT in AR. METHODS: The present study utilized online Gene Expression Omnibus (GEO) microarray expression profiling dataset GSE37157 and GSE29521 to analyze the hub genes changes related to AIT in AR. Based on limma package, differential expression analysis for the two groups (samples of allergic patients prior to AIT and samples of allergic patients undergoing AIT) was performed to obtain differentially expressed genes (DEGs). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs were conducted using DAVID database. A Protein-Protein Interaction network (PPI) was built and a significant network module was acquired by using Cytoscape software (Cytoscape, 3.7.2). Utilizing the miRWalk database, we identified potential gene biomarkers, constructed interaction networks of target genes and microRNAs (miRNAs) using Cytoscape software, and explore the cell type-specific expression patterns of these genes in peripheral blood using publicly available single-cell RNA sequencing data (GSE200107). Finally, we are using PCR to detect changes in the hub genes that are screened using the above method in peripheral blood before and after AIT treatment. RESULTS: GSE37157 and GSE29521 included 28 and 13 samples, respectively. A total of 119 significantly co-upregulated DEGs and 33 co-downregulated DEGs were obtained from two datasets. The GO and KEGG analyses demonstrated that protein transport, positive regulation of apoptotic process, Natural killer cell mediated cytotoxicity, T cell receptor signaling pathway, TNF signaling pathway, B cell receptor signaling pathway and Apoptosis may be potential candidate therapeutic targets for AIT of AR. From the PPI network, 20 hub genes were obtained. Among them, the PPI sub-networks of CASP3, FOXO3, PIK3R1, PIK3R3, ATF4, and POLD3 screened out from our study have been identified as reliable predictors of AIT in AR, especially the PIK3R1. CONCLUSION: Our analysis has identified novel gene signatures, thereby contributing to a more comprehensive understanding of the molecular mechanisms underlying AIT in the treatment of AR.


Assuntos
MicroRNAs , Rinite Alérgica , Humanos , Rinite Alérgica/genética , Rinite Alérgica/terapia , Fatores de Transcrição , MicroRNAs/genética , Alérgenos/genética , Imunoterapia , Fosfatidilinositol 3-Quinases
16.
Eur J Immunol ; 52(8): 1308-1320, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35524548

RESUMO

Human nasal mucosa is susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and serves as a reservoir for viral replication before spreading to other organs (e.g. the lung and brain) and transmission to other individuals. Chronic rhinosinusitis (CRS) is a common respiratory tract disease and there is evidence suggesting that susceptibility to SARS-CoV-2 infection differs between the two known subtypes, eosinophilic CRS and non-ECRS (NECRS). However, the mechanism of SARS-CoV-2 infection in the human nasal mucosa and its association with CRS has not been experimentally validated. In this study, we investigated whether the human nasal mucosa is susceptible to SARS-CoV-2 infection and how different endotypes of CRS impact on viral infection and progression. Primary human nasal mucosa tissue culture revealed highly efficient SARS-CoV-2 viral infection and production, with particularly high susceptibility in the NECRS group. The gene expression differences suggested that human nasal mucosa is highly susceptible to SARS-CoV-2 infection, presumably due to an increase in ACE2-expressing cells and a deficiency in antiviral immune response, especially for NECRS. Importantly, patients with NECRS may be at a particularly high risk of viral infection and transmission, and therefore, close monitoring should be considered.


Assuntos
COVID-19 , Rinite , Sinusite , Doença Crônica , Humanos , Mucosa Nasal/metabolismo , Rinite/complicações , Rinite/metabolismo , SARS-CoV-2 , Sinusite/complicações , Sinusite/metabolismo
17.
BMC Microbiol ; 23(1): 302, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872475

RESUMO

BACKGROUND: Small peptides play a crucial role in plant growth and adaptation to the environment. Exogenous small peptides are often applied together with surfactants as foliar fertilizers, but the impact of small peptides and surfactants on the tea phyllosphere microbiome remains unknown. RESULTS: In this study, we investigated the effects of small peptides and different surfactants on the tea phyllosphere microbiome using 16S and ITS sequencing. Our results showed that the use of small peptides reduced the bacterial diversity of the tea phyllosphere microbiome and increased the fungal diversity, while the use of surfactants influenced the diversity of bacteria and fungi. Furthermore, the addition of rhamnolipid to small peptides significantly improved the tea phyllosphere microbiome community structure, making beneficial microorganisms such as Pseudomonas, Chryseobacterium, Meyerozyma, and Vishniacozyma dominant populations. CONCLUSION: Our study suggests that the combined use of small peptides and surfactants can significantly modify the tea phyllosphere microbiome community structure, particularly for beneficial microorganisms closely related to tea plant health. Thus, this preliminary study offers initial insights that could guide the application of small peptides and surfactants in agricultural production, particularly with respect to their potential for modulating the phyllosphere microbiome community in tea plant management.


Assuntos
Camellia sinensis , Microbiota , Folhas de Planta/microbiologia , Bactérias/genética , Tensoativos/farmacologia , Chá
18.
BMC Microbiol ; 23(1): 250, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679671

RESUMO

BACKGROUND: Rapeseed cake is an important agricultural waste. After enzymatic fermentation, rapeseed cake not only has specific microbial diversity but also contains a lot of fatty acids, organic acids, amino acids and their derivatives, which has potential value as a high-quality organic fertilizer. However, the effects of fermented rapeseed cake on tea rhizosphere microorganisms and soil metabolites have not been reported. In this study, we aimed to elucidate the effect of enzymatic rapeseed cake fertilizer on the soil of tea tree, and to reveal the correlation between rhizosphere soil microorganisms and nutrients/metabolites. RESULTS: The results showed that: (1) The application of enzymatic rapeseed cake increased the contents of soil organic matter (OM), total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), and available phosphorus (AP); increased the activities of soil urease (S-UE), soil catalase (S-CAT), soil acid phosphatase (S-ACP) and soil sucrase (S-SC); (2) The application of enzymatic rapeseed cake increased the relative abundance of beneficial rhizosphere microorganisms such as Chaetomium, Inocybe, Pseudoxanthomonas, Pseudomonas, Sphingomonas, and Stenotrophomonas; (3) The application of enzymatic rapeseed cake increased the contents of sugar, organic acid, and fatty acid in soil, and the key metabolic pathways were concentrated in sugar and fatty acid metabolisms; (4) The application of enzymatic rapeseed cake promoted the metabolism of sugar, organic acid, and fatty acid in soil by key rhizosphere microorganisms; enzymes and microorganisms jointly regulated the metabolic pathways of sugar and fatty acids in soil. CONCLUSIONS: Enzymatic rapeseed cake fertilizer improved the nutrient status and microbial structure of tea rhizosphere soil, which was beneficial for enhancing soil productivity in tea plantations. These findings provide new insights into the use of enzymatic rapeseed cake as an efficient organic fertilizer and expand its potential for application in tea plantations.


Assuntos
Brassica napus , Brassica rapa , Fermentação , Solo , Fertilizantes , Rizosfera , Ácidos Graxos , Açúcares , Chá
19.
Respir Res ; 24(1): 25, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694200

RESUMO

BACKGROUND: Radiation-induced lung injury (RILI) is the most common and serious complication of chest radiotherapy. However, reported radioprotective agents usually lead to radiation resistance in tumor cells. The key to solving this problem is to distinguish between the response of tumor cells and normal lung epithelial cells to radiation damage. METHODS: RNA-Seq was used to recognize potential target of alleviating the progression of RILI as well as inhibiting tumor growth. The activation of NLRP3 inflammasome in lung epithelial cells was screened by qRT-PCR, western blotting, immunofluorescence, and ELISA. An in vivo model of RILI and in vitro conditioned culture model were constructed to evaluate the effect of NLRP3/interleukin-1ß on fibroblasts activation. ROS, ATP, and (NADP)+/NADP(H) level in lung epithelial cells was detected to explore the mechanism of NLRP3 inflammasome activation. The lung macrophages of the mice were deleted to evaluate the role of lung epithelial cells in RILI. Moreover, primary cells were extracted to validate the results obtained from cell lines. RESULTS: NLRP3 activation in epithelial cells after radiation depends on glycolysis-related reactive oxygen species accumulation. DPYSL4 is activated and acts as a negative regulator of this process. The NLRP3 inflammasome triggers interleukin-1ß secretion, which directly affects fibroblast activation, proliferation, and migration, eventually leading to lung fibrosis. CONCLUSIONS: Our study suggests that NLRP3 inflammasome activation in lung epithelial cells is essential for radiation-induced lung injury. These data strongly indicate that targeting NLRP3 may be effective in reducing radiation-induced lung injury in clinical settings.


Assuntos
Inflamassomos , Lesão Pulmonar , Lesões Experimentais por Radiação , Animais , Camundongos , Células Epiteliais/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , NADP/metabolismo , NADP/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lesões Experimentais por Radiação/complicações , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo
20.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702748

RESUMO

As a new type of packaging method, natural pigment-based pH-sensitive indicator film packaging can be used to intelligently monitor food freshness, provide consumers with intuitive food freshness information, and own the advantages of small size, low cost and intuitive accuracy. Based on the introduction of the principle of natural pigment in pH-sensitive indicator film intelligent packaging, this paper reviews the types of natural pigment indicators (such as anthocyanins, curcumin) and film-forming matrix materials, and systematically discusses the research progress of their application in freshness monitoring in various foods, and points out the limitations of this intelligent packaging in practical applications. In order to provide natural pigment in the application and promotion of pH-sensitive indicator film packaging for monitoring food freshness, further research and development works are required to overcome the current limitations. The needs for further research and developments are outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA