Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 580, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35953780

RESUMO

BACKGROUND: High temperature induces early bolting in lettuce (Lactuca sativa L.), which affects both quality and production. However, the molecular mechanism underlying high temperature-induced bolting is still limited. RESULTS: We performed systematical analysis of morphology, transcriptome, miRNAs and methylome in lettuce under high temperature treatment. Through a comparison of RNA-Seq data between the control and the high temperature treated lettuces at different time points totally identified 2944 up-regulated genes and 2203 down-regulated genes, which cover three floral pathways including photoperiod, age and gibberellin (GA) pathways. Genome wide analysis of miRNAs and methylome during high temperature treatment indicated miRNAs and DNA methylation might play a role controlling gene expression during high temperature-induced bolting. miRNA targets included some protein kinase family proteins, which potentially play crucial roles in this process. CONCLUSIONS: Together, our results propose a possible regulation network involved in high temperature-induced bolting.


Assuntos
Lactuca , MicroRNAs , Flores/genética , Regulação da Expressão Gênica de Plantas , Lactuca/genética , Lactuca/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Temperatura
2.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232436

RESUMO

The mitogen-activated protein kinase (MAPK) pathway is a widely distributed signaling cascade in eukaryotes and is involved in regulating plant growth, development, and stress responses. High temperature, a frequently occurring environmental stressor, causes premature bolting in lettuce with quality decline and yield loss. However, whether MAPKs play roles in thermally induced bolting remains poorly understood. In this study, 17 LsMAPK family members were identified from the lettuce genome. The physical and chemical properties, subcellular localization, chromosome localization, phylogeny, gene structure, family evolution, cis-acting elements, and phosphorylation sites of the LsMAPK gene family were evaluated via in silico analysis. According to phylogenetic relationships, LsMAPKs can be divided into four groups, A, B, C, and D, which is supported by analyses of gene structure and conserved domains. The collinearity analysis showed that there were 5 collinearity pairs among LsMAPKs, 8 with AtMAPKs, and 13 with SlMAPKs. The predicted cis-acting elements and potential phosphorylation sites were closely associated with hormones, stress resistance, growth, and development. Expression analysis showed that most LsMAPKs respond to high temperatures, among which LsMAPK4 is significantly and continuously upregulated upon heat treatments. Under heat stress, the stem length of the LsMAPK4-knockdown lines was significantly shorter than that of the control plants, and the microscope observations demonstrated that the differentiation time of flower buds at the stem apex was delayed accordingly. Therefore, silencing of LsMAPK4 significantly inhibited the high- temperature-accelerated bolting in lettuce, indicating that LsMPAK4 might be a potential regulator of lettuce bolting. This study provides a theoretical basis for a better understanding of the molecular mechanisms underlying the MAPK genes in high-temperature-induced bolting.


Assuntos
Lactuca , Proteínas Quinases Ativadas por Mitógeno , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Lactuca/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
3.
BMC Genomics ; 22(1): 427, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107883

RESUMO

BACKGROUND: Lettuce (Lactuca sativa L.), one of the most economically important leaf vegetables, exhibits early bolting under high-temperature conditions. Early bolting leads to loss of commodity value and edibility, leading to considerable loss and waste of resources. However, the initiation and molecular mechanism underlying early bolting induced by high temperature remain largely elusive. RESULTS: In order to better understand this phenomenon, we defined the lettuce bolting starting period, and the high temperature (33 °C) and controlled temperature (20 °C) induced bolting starting phase of proteomics is analyzed, based on the iTRAQ-based proteomics, phenotypic measurement, and biological validation by RT-qPCR. Morphological and microscopic observation showed that the initiation of bolting occurred 8 days after high-temperature treatment. Fructose accumulated rapidly after high-temperature treatment. During initiation of bolting, of the 3305 identified proteins, a total of 93 proteins exhibited differential abundances, 38 of which were upregulated and 55 downregulated. Approximately 38% of the proteins were involved in metabolic pathways and were clustered mainly in energy metabolism and protein synthesis. Furthermore, some proteins involved in sugar synthesis were differentially expressed and were also associated with energy production. CONCLUSIONS: This report is the first to report on the metabolic changes involved in the initiation of bolting in lettuce. Our study suggested that energy metabolism and ribosomal proteins are pivotal components during initiation of bolting. This study could provide a potential regulatory mechanism for the initiation of early bolting by high temperature, which could have applications in the manipulation of lettuce for breeding.


Assuntos
Lactuca , Proteômica , Metabolismo Energético , Lactuca/genética , Melhoramento Vegetal , Biossíntese de Proteínas , Temperatura
4.
Plant Cell Environ ; 42(6): 1868-1881, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30680748

RESUMO

Lettuce (Lactuca sativa L.) is an important leafy vegetable consumed worldwide. Heat-induced bolting and flowering greatly limit lettuce production during the summer. Additionally, MADS-box transcription factors are important for various aspects of plant development and architecture (e.g., flowering and floral patterning). However, there has been no comprehensive study of lettuce MADS-box family genes. In this study, we identified 82 MADS-box family genes in lettuce, including 23 type I genes and 59 type II genes. Transcriptome profiling revealed that LsMADS gene expression patterns differ among the various floral stages and organs. Moreover, heat-responsive cis-elements were detected in the promoter regions of many LsMADS genes. An in situ hybridization assay of 10 homologs of flower-patterning genes and a yeast two-hybrid assay of the encoded proteins revealed that the ABC model is conserved in lettuce. Specifically, the APETALA1 (AP1) homolog in lettuce, LsMADS55, is responsive to heat and is specifically expressed in the inflorescence meristem and pappus bristles. The overexpression of LsMADS55 results in early flowering in Arabidopsis thaliana. Furthermore, we observed that the heat shock factor LsHSFB2A-1 can bind to the LsMADS55 promoter in lettuce. Therefore, a model was proposed for the LsMADS-regulated floral organ specification and heat-induced flowering in lettuce.


Assuntos
Flores/genética , Lactuca/genética , Proteínas de Domínio MADS/genética , Desenvolvimento Vegetal/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Lactuca/fisiologia , Meristema , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
5.
Biochem Biophys Res Commun ; 503(2): 998-1003, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29936180

RESUMO

Brassica campestris Male Fertility 20 (BcMF20) is a typical zinc-finger transcription factor that was previously isolated from flower buds of Chinese cabbage (Brassica campestris ssp. chinensis). By applying expression pattern analysis, it can be known that BcMF20 was specifically and strongly expressed in tapetum and pollen, beginning from the uninucleate stage, and was maintained during the mature-pollen stage. As BcMF20 was highly conserved in Cruciferae, it can be indicated that this zinc-finger transcription factor is important during the growth of Cruciferae. In this study, 12 C2H2-type zinc-finger TFs which shared high homology with BcMF20 were found from NCBI via BLAST. A new molecular phylogenetic tree was constructed by the comparison between BcMF20 and these 12 C2H2-type zinc-finger TFs with NJ method. By analyzing this phylogenetic tree, the evolution of BcMF20 was discussed. Then, antisense RNA technology was applied in the transgenesis of Arabidopsis thaliana to get the deletion mutants of BcMF20, so that its function during the pollen development can be identified. The results showed: BcMF20 are in the same clade with three genes from Arabidopsis. The inhibition of BcMF20 expression led to smaller amounts of and lower rate in germination of pollen and lower rate in fruit setting in certain transgenetic plants. This also led to the complete collapse of pollen grains. By SEM and TEM, pollen morphology and anther development processes were observed. In the middle uninucleate microspore stage, a relatively thin or even no primexine was formed in microspores. This may result in the malformation of the pollen wall and finally cause the deformity of pollens. Above all, it can be indicated that BcMF20 may act as a part of regulation mechanisms of TAZ1 and MS1. Together they play a role in a genetic pathway in the tapetum to act on proliferation of tapetal cells and keep the normal development of pollens.


Assuntos
Brassica/genética , Germinação , Proteínas de Plantas/genética , Pólen/genética , Fatores de Transcrição/genética , Brassica/crescimento & desenvolvimento , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Pólen/crescimento & desenvolvimento , Dedos de Zinco
6.
Int J Mol Sci ; 19(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641499

RESUMO

The present study aimed to compare polyphenols among red lettuce cultivars and identify suitable cultivars for the development and utilization of healthy vegetables. Polyphenols, mineral elements, and antioxidant activity were analyzed in the leaves of six red pigmented lettuce (Lactuca sativa L.) cultivars; thereafter, we assessed the anti-tumor effects of cultivar B-2, which displayed the highest antioxidant activity. Quadrupole-Orbitrap mass spectrometry analysis revealed four classes of polyphenols in these cultivars. The composition and contents of these metabolites varied significantly among cultivars and primarily depended on leaf color. The B-2 cultivar had the highest antioxidant potential than others because it contained the highest levels of polyphenols, especially anthocyanin, flavone, and phenolic acid; furthermore, this cultivar displayed anti-tumor effects against the human lung adenocarcinoma cell line A549, human hepatoma cell line Bel7402, human cancer colorectal adenoma cell line HCT-8, and HT-29 human colon cancer cell line. Hence, the new red-leaf lettuce cultivar B-2 has a distinct metabolite profile, with high potential for development and utilization of natural phytochemical and mineral resources in lettuces and can be used as a nutrient-dense food product.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Lactuca/química , Extratos Vegetais/farmacologia , Antocianinas/análise , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Células HT29 , Células Hep G2 , Humanos , Lactuca/metabolismo , Extratos Vegetais/química , Polifenóis/análise
7.
Int J Mol Sci ; 19(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274198

RESUMO

Bolting is a key process in the growth and development of lettuce (Lactuca sativa L.). A high temperature can induce early bolting, which decreases both the quality and production of lettuce. However, knowledge of underlying lettuce bolting is still lacking. To better understand the molecular basis of bolting, a comparative proteomics analysis was conducted on lettuce stems, during the bolting period induced by a high temperature (33 °C) and a control temperature (20 °C) using iTRAQ-based proteomics, phenotypic measures, and biological verifications using qRT-PCR and Western blot. The high temperature induced lettuce bolting, while the control temperature did not. Of the 5454 identified proteins, 619 proteins presented differential abundance induced by high-temperature relative to the control group, of which 345 had an increased abundance and 274 had a decreased abundance. Proteins with an abundance level change were mainly enriched in pathways associated with photosynthesis and tryptophan metabolism involved in auxin (IAA) biosynthesis. Moreover, among the proteins with differential abundance, proteins associated with photosynthesis and tryptophan metabolism were increased. These findings indicate that a high temperature enhances the function of photosynthesis and IAA biosynthesis to promote the process of bolting, which is in line with the physiology and transcription level of IAA metabolism. Our data provide a first comprehensive dataset for gaining novel understanding of the molecular basis underlying lettuce bolting induced by high temperature. It is potentially important for further functional analysis and genetic manipulation for molecular breeding to breed new cultivars of lettuce to restrain early bolting, which is vital for improving vegetable quality.


Assuntos
Temperatura Alta , Ácidos Indolacéticos/metabolismo , Lactuca/metabolismo , Lactuca/fisiologia , Fotossíntese , Proteômica/métodos , Análise por Conglomerados , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Marcação por Isótopo , Lactuca/anatomia & histologia , Lactuca/genética , Redes e Vias Metabólicas , Proteínas de Plantas/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Plants (Basel) ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794431

RESUMO

Lettuce is susceptible to high-temperature stress during cultivation, leading to bolting and affecting yield. Plant-specific transcription factors, known as GRAS proteins, play a crucial role in regulating plant growth, development, and abiotic stress responses. In this study, the entire lettuce LsGRAS gene family was identified. The results show that 59 LsGRAS genes are unevenly distributed across the nine chromosomes. Additionally, all LsGRAS proteins showed 100% nuclear localization based on the predicted subcellular localization and were phylogenetically classified into nine conserved subfamilies. To investigate the expression profiles of these genes in lettuce, we analyzed the transcription levels of all 59 LsGRAS genes in the publicly available RNA-seq data under the high-temperature treatment conducted in the presence of exogenous melatonin. The findings indicate that the transcript levels of the LsGRAS13 gene were higher on days 6, 9, 15, 18, and 27 under the high-temperature (35/30 °C) treatment with melatonin than on the same treatment days without melatonin. The functional studies demonstrate that silencing LsGRAS13 accelerated bolting in lettuce. Furthermore, the paraffin sectioning results showed that flower bud differentiation in LsGRAS13-silenced plants occurred significantly faster than in control plants. In this study, the LsGRAS genes were annotated and analyzed, and the expression pattern of the LsGRAS gene following melatonin treatment under high-temperature conditions was explored. This exploration provides valuable information and identifies candidate genes associated with the response mechanism of lettuce plants high-temperature stress.

9.
Plant Sci ; : 112195, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002573

RESUMO

High temperature (HT) is an environmental factor that considerably affects plant physiology, development, crop yield, and economic value. HT can cause diseases and early bolting of leaf lettuce, thereby reducing the yield and quality of leaf lettuce. Herein, we used two leaf lettuce (Lactuca sativa L.) cultivars (bolting-resistant 'S24' and bolting-sensitive 'S39') to investigate the key factors and molecular mechanism impacting bolting. We found that 14 MADS-box genes implicated in bolting and flowering, LsMADS54 (also referred to as L. sativa FRUITFULL, LsFUL), was significantly up-regulated 1,000 times after 5-d HT treatment and that HT-induced up-regulation of LsFUL was higher in bolting-sensitive than in resistant cultivars. The overexpression lines of LsFUL exhibited an earlier bolting time than that in the non-transformed 'S39'(CK). However, the RNA interference, and CRISPR-Cas9-mediated knockout lines of LsFUL exhibited a later bolting time than that in CK. In addition, we found that L. sativa SUPPRESSORS OF MEC-8 AND UNC-52 PROTEIN 2 (LsSMU2) and L. sativa CONSTANS-LIKE PROTEIN 5 (LsCOL5) interact with LsFUL, and these interactions could stimulate or prevent bolting. We observed that elevated temperature stimulated the abundance of LsSMU2 in the stem, which collaborated with LsFUL to accelerate bolting. Conversely, room temperature (RT) condition led to relatively more stable LsCOL5, which worked with LsFUL to postpone bolting. In summary, our findings demonstrate a molecular regulatory module of LsSMU2-LsFUL associated with HT-induced premature bolting, which serves as a reference for understanding HT-induced premature bolting phenomenon in leaf lettuce.

10.
Hortic Res ; 10(5): uhad054, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37213687

RESUMO

A variety of endogenous hormone signals, developmental cues, and environmental stressors can trigger and promote leaf lettuce bolting. One such factor is gibberellin (GA), which has been linked to bolting. However, the signaling pathways and the mechanisms that regulate the process have not been discussed in full detail. To clarify the potential role of GAs in leaf lettuce, significant enrichment of GA pathway genes was found by RNA-seq, among which the LsRGL1 gene was considered significant. Upon overexpression of LsRGL1, a noticeable inhibition of leaf lettuce bolting was observed, whereas its knockdown by RNA interference led to an increase in bolting. In situ hybridization analysis indicated a significant accumulation of LsRGL1 in the stem tip cells of overexpressing plants. Leaf lettuce plants stably expressing LsRGL1 were examined concerning differentially expressed genes through RNA-seq analysis, and the data indicated enhanced enrichment of these genes in the 'plant hormone signal transduction' and 'phenylpropanoid biosynthesis' pathways. Additionally, significant changes in LsWRKY70 gene expression were identified in COG (Clusters of Orthologous Groups) functional classification. The results of yeast one-hybrid, ß-glucuronidase (GUS), and biolayer interferometry (BLI) experiments showed that LsRGL1 proteins directly bind to the LsWRKY70 promoter. Silencing LsWRKY70 by virus-induced gene silencing (VIGS) can delay bolting, regulate the expression of endogenous hormones, abscisic acid (ABA)-linked genes, and flowering genes, and improve the nutritional quality of leaf lettuce. These results strongly associate the positive regulation of bolting with LsWRKY70 by identifying its vital functions in the GA-mediated signaling pathway. The data obtained in this research are invaluable for further experiments concerning the development and growth of leaf lettuce.

11.
Plants (Basel) ; 11(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35631810

RESUMO

High temperature is a huge threat to lettuce production in the world, and spermidine (Spd) has been shown to improve heat tolerance in lettuce, but the action mechanism of Spd and the role of polyamine metabolism are still unclear. The effects of Spd and D-arginine (D-arg) on hydroponic lettuce seedlings under high-temperature stress by foliar spraying of Spd and D-arg were investigated. The results showed that high-temperature stress significantly inhibited the growth of lettuce seedlings, with a 33% decrease in total fresh weight and total dry weight; photosynthesis of lettuce seedlings was inhibited by high-temperature stress, and the inhibition was greater in the D-arg treatment, while the Spd recovery treatment increased net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), stomatal limit value (Ls), and intercellular CO2 concentration (Ci). High-temperature stress significantly reduced the maximum photochemical efficiency (Fv/Fm), photochemical quenching coefficient (qP), electron transport rate (ETR), and photochemical efficiency of PSII (ΦPSII), increased the non-photochemical burst coefficient (NPQ) and reduced the use of light energy, which was alleviated by exogenous Spd. The increase in polyamine content may be due to an increase in polyamine synthase activity and a decrease in polyamine oxidase activity, as evidenced by changes in the expression levels of genes related to polyamine synthesis and metabolism enzymes. This evidence suggested that D-arg suppressed endogenous polyamine levels in lettuce and reduced its tolerance, whereas exogenous Spd promoted the synthesis and accumulation of polyamines in lettuce and increased its photosynthetic and oxidative stress levels, which had an impact on the tolerance of lettuce seedlings.

12.
Antioxidants (Basel) ; 11(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36552540

RESUMO

Lettuce is sensitive to high temperature, and exogenous spermidine can improve heat tolerance in lettuce, but its intrinsic mechanism is still unclear. We analyzed the effects of exogenous spermidine on the leaf physiological metabolism, transcriptome and metabolome of lettuce seedlings under high-temperature stress using the heat-sensitive lettuce variety 'Beisansheng No. 3' as the material. The results showed that exogenous spermidine increased the total fresh weight, total dry weight, root length, chlorophyll content and total flavonoid content, increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and decreased malondialdehyde (MDA) content in lettuce under high temperature stress. Transcriptome and metabolome analyses revealed 818 differentially expressed genes (DEGs) and 393 metabolites between water spray and spermidine spray treatments under high temperature stress, and 75 genes from 13 transcription factors (TF) families were included in the DEGs. The Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of DEG contains pathways for plant-pathogen interactions, photosynthesis-antennal proteins, mitogen-activated protein kinase (MAPK) signaling pathway and flavonoid biosynthesis. A total of 19 genes related to flavonoid synthesis were detected. Most of these 19 DEGs were down-regulated under high temperature stress and up-regulated after spermidine application, which may be responsible for the increase in total flavonoid content. We provide a possible source and conjecture for exploring the mechanism of exogenous spermidine-mediated heat tolerance in lettuce.

13.
Front Plant Sci ; 13: 921021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837450

RESUMO

High temperature is one of the primary environmental stress factors affecting the bolting of leaf lettuce. To determine the potential role of melatonin in regulating high-temperature induced bolting in leaf lettuce (Lactuca sativa L.), we conducted melatonin treatment of the bolting-sensitive cultivar "S39." The results showed that 100 µmol L-1 melatonin treatment significantly promoted growth, and melatonin treatment delayed high-temperature-induced bolting in lettuce. RNA-seq analysis revealed that the differentially expressed genes (DEGs) involved in "plant hormone signal transduction" and "phenylpropanoid biosynthesis" were significantly enriched during high-temperature and melatonin treatment. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis suggested that the expression patterns of abscisic acid (ABA)-related genes positively correlated with stem length during leaf lettuce development. Furthermore, weighted gene co-expression network analysis (WGCNA) demonstrated that MYB15 may play an important role in melatonin-induced resistance to high temperatures. Silencing the LsMYB15 gene in leaf lettuce resulted in early bolting, and exogenous melatonin delayed early bolting in leaf lettuce at high temperatures. Our study provides valuable data for future studies of leaf lettuce quality.

14.
Plant Physiol Biochem ; 192: 162-171, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36242907

RESUMO

Lettuce is a common vegetable in hydroponic production. In this paper, a selenium (Se)-biofortification method was provided. The Se content, speciation, and the effects of different concentrations of selenate and selenite on lettuce growth and amino acids were investigated. The results showed that lettuce had strong ability to accumulate exogenous selenium, and inorganic Se could be effectively converted into organic Se. The proportion of organic Se in the shoots under treatment with 4 µmol L-1 selenite was 100%. Selenomethionine was the main organic Se, accounting for 51% (selenate) and 90% (selenite) of the total Se. Adding Se improves photosynthesis of lettuce and promotes growth. The growth with 2 µmol L-1 selenate and 4 µmol L-1 selenite was better than CK, and the shoot fresh weight was increased by 143.22% and 166.98%, respectively. Furthermore, the optimum Se application is 2 µmol L-1, and some areas can apply 4 µmol L-1 selenite. But Se-excessive areas are not recommended to grow selenium-rich foods. Therefore, lettuce has strong biofortification potential.

15.
Open Life Sci ; 17(1): 438-446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35582624

RESUMO

Plant bolting is regulated and controlled by various internal and external factors. We aimed to provide an improved method for breeding to determine whether there is a synergism between hormones and to explore the regulatory effect of plant hormones on the bolting of leaf lettuce. Lettuce plants were sprayed with exogenous auxin and gibberellin separately or in combination. The specific bolting period was determined by the change in stem length and cytological observation. The dynamic changes in endogenous hormones and genes closely related to bolting were analyzed. Treatment with gibberellin alone and the combined application of auxin and gibberellin induced bolting on the fourth day, and treatment with auxin alone resulted in bolting on the eighth day. In the early bolting stage, the auxin contents in the stems of the treatment groups, especially the combined gibberellin and auxin group, were higher than those of the control group. After the application of exogenous auxin and gibberellin, we found that the expression of the ARF8 and GID1 genes was upregulated. Based on the results of our study, combined treatment with exogenous gibberellin and auxin was the best method to promote the bolting of leaf lettuce, and the ARF8 and GID1 genes are closely related to this process.

16.
Sci Justice ; 62(1): 76-85, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35033330

RESUMO

One of the key tasks of soil analysis in forensic sciences is to provide information about its diversities and geolocation. In fact, soil analysis is relevant for forensic geologists. In this study, a total of 80 soil samples were collected from eight Chinese cities (10 samples per city). Different minerals and their relative percentages were analyzed by the X-ray diffraction (XRD) method. In addition, the relative amounts of montmorillonite, kaolinite, amphibole, feldspar, calcite, and dolomite provided information about the origin of a soil, either if it came from a northern or southern city of China. The oxide weight percentages of 10 elements of Al2O3, SiO2, Fe2O3, K2O, Na2O, MgO, CaO, P2O5, MnO, and TiO2 were also obtained by using X-ray fluorescence (XRF) from the 80 soil samples. Moreover, principal component analysis (PCA) and hierarchical clustering analysis (HCA) methods were performed for dimensionality reduction, elemental marker identification and soils classification to the city they came from purposes. The eighty soils analyzed in this study could be tracked correctly to their city of origin. The K-Nearest Neighbors (KNN) model was done to evaluate the prediction ability based on the soil elemental composition, and it was confirmed by cross validation methods. The results demonstrated that mineralogical and elemental composition can provide powerful information for soil discrimination and source tracing.


Assuntos
Minerais , Solo , China , Humanos , Minerais/análise
17.
Mol Biol Rep ; 38(8): 5321-5, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21327825

RESUMO

The Arabidopsis transcription factor (At1g26610) was shown to be down-regulated in male sterile lines compared to their maintainer line in Chinese cabbage (Brassica campestris ssp. chinensis) in our previous study. The BcMF20 gene, homologue of the At1g26610 gene was isolated from Chinese cabbage. It encodes a putative C2H2 zinc finger protein. The spatial and temporal expression patterns examined by qRT-PCR and in situ hybridization, indicated BcMF20 is specifically expressed in the developing pollen grains and the tapetum from the uninucleate pollen stage to mature pollen stage.


Assuntos
Brassica/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Fatores de Transcrição/metabolismo , Brassica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Especificidade de Órgãos/genética , Proteínas de Plantas/genética , Pólen/citologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-33955804

RESUMO

The international wine market has been repeatedly hit by cases of fraud in recent decades. While several studies attested a special vulnerability of the fast growing wine business in China, reports on chemical analyses of commercial wine samples are rare. We examined 50 predominantly red wines with European labelling, which were purchased on the Chinese market, for fraud-relevant parameters. More than 20% of the tested samples revealed anomalies in relation to the stable isotope ratios of D/H, 18O/16O and 13C/12C, contents of technical glycerol by-products or anthocyanin composition. These results strongly suggested watering of the wines, chaptalisation, glycerol addition or the use of non-Vitis anthocyanin sources, respectively. Some of these samples also showed suspicious spelling errors or other irregularities in the labelling, but the majority appeared genuine to the eye. Hence, this spot check demonstrates the importance of chemical authenticity analysis of market samples in order to detect fraudulent products. Moreover, we used the same sample set for an evaluation of the Chinese standard method for carbon stable isotope determination of wine ethanol in comparison to the current OIV (International Organisation of Vine and Wine) standard method. The results of a Bland-Altman analysis indicated that the methods can be applied interchangeably. As the two methods differ in their workflow and in the requested equipment, this might eventually enable more laboratories to perform 13C/12C analysis of wine and spirits.


Assuntos
Antocianinas/química , Isótopos de Carbono/química , Aditivos Alimentares/análise , Glicerol/química , Isótopos de Oxigênio/química , Vinho/análise , China , Etanol/química , Europa (Continente) , Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Vitis/química , Água
19.
Plant Signal Behav ; 16(7): 1913845, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-33955335

RESUMO

To determine the effect of the serine/threonine protein kinase (STPK) gene on leaf lettuce bolting, we utilized virus-induced gene silencing (VIGS) using the TRV vector to silence the target gene. The 'GB30' leaf lettuce cultivar was the test material, and the methods included gene cloning, bioinformatics analysis, quantitative real-time PCR (qRT-PCR) and VIGS. LsSTPK, was cloned from the 'GB30' leaf lettuce cultivar via reverse transcription-polymerase chain reaction (RT-PCR). qRT-PCR analysis showed that the expression of LsSTPK in the stem of leaf lettuce was significantly greater than that in the roots and leaves, and after high-temperature treatment, the gene expression in the stems in the experimental group was markedly lower than that in the control groups. Following LsSTPK silencing via the VIGS method, the stem length in the treatment group was significantly greater than that in the blank and negative control groups, and the contents of auxin (IAA), GA3 and abscisic acid (ABA) in the treatment group were greater than those in the other two groups. Flower bud differentiation occurred in the treatment group but not in the control group. The above findings suggested that LsSTPK inhibits the bolting of leaf lettuce under high-temperature conditions.


Assuntos
Inativação Gênica , Lactuca/crescimento & desenvolvimento , Vírus de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Clonagem Molecular , Genes de Plantas , Vetores Genéticos , Temperatura Alta , Lactuca/enzimologia , Lactuca/genética , Lactuca/virologia , Proteínas Serina-Treonina Quinases/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
20.
Food Chem ; 360: 129937, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33989881

RESUMO

Economical-driven counterfeit and inferior aged Chinese Baijiu has caused serious concern of publicity in China. In this study, a total of 167 authentic Chinese Baijiu samples with different vintages including 3 flavor types were carefully collected. Gas chromatography (GC) was used to determine main volatile components and proton nuclear magnetic resonance (1H NMR) spectroscopy was employed to obtain non-targeted fingerprints of Chinese Baijiu samples. Partial least squares regression (PLSR) models, which were confirmed by internal and external validation, were established for effectively identifying actual storage vintage of Chinese Baijiu with various brands, flavor types. Centering (Ctr), pareto scaling (Par), unit variance scaling (UV) data pretreatment methods, principal components (PCs), and three modified variable selection methods were proposed to successfully optimize the vintage model and effectively extract important vintage characteristic factors. This study demonstrated that NMR and GC combined with multivariate statistical analysis are effective tools for validating vintage authenticity of Chinese Baijiu.


Assuntos
Bebidas Alcoólicas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Compostos Orgânicos Voláteis/análise , China , Aromatizantes/análise , Análise Multivariada , Odorantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA