RESUMO
Black goji berry (Lycium ruthenicum Murray) contains a rich source of health-promoting anthocyanins which are used in herbal medicine and nutraceutical foods in China. A natural variant producing white berries allowed us to identify two key genes involved in the regulation of anthocyanin biosynthesis in goji berries: one encoding a MYB transcription factor (LrAN2-like) and one encoding a basic helix-loop-helix (bHLH) transcription factor (LrAN1b). We previously found that LrAN1b expression was lost in the white berry variant, but the molecular basis for this phenotype was unknown. Here, we identified the molecular mechanism for loss of anthocyanins in white goji berries. In white goji, the LrAN1b promoter region has a 229â bp deletion that removes three MYB-binding elements and one bHLH-binding element, which are key to its expression. Complementation of the white goji berry LrAN1b allele with the LrAN1b promoter restored pigmentation. Virus-induced gene silencing of LrAN1b in black goji berry reduced fruit anthocyanin biosynthesis. Molecular analyses showed that LrAN2-like and another bHLH transcription factor LrJAF13 can activate LrAN1b by binding directly to the MYB-recognizing element and bHLH-recognizing element of its promoter-deletion region. LrAN1b expression is enhanced by the interaction of LrAN2-like with LrJAF13 and the WD40 protein LrAN11. LrAN2-like and LrAN11 interact with either LrJAF13 or LrAN1b to form two MYB-bHLH-WD40 complexes, which hierarchically regulate anthocyanin biosynthesis in black goji berry. This study on a natural variant builds a comprehensive anthocyanin regulatory network that may be manipulated to tailor goji berry traits.
Assuntos
Antocianinas , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Frutas , Regulação da Expressão Gênica de Plantas , Lycium , Proteínas de Plantas , Regiões Promotoras Genéticas , Antocianinas/biossíntese , Antocianinas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Frutas/genética , Frutas/metabolismo , Lycium/genética , Lycium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: High soil salinity often adversely affects plant physiology and agricultural productivity of almost all crops worldwide, such as the crude drug known as wolfberry. However, the mechanism of this action in wolfberry is not fully understood yet. RESULTS: Here in this study, we studied different mechanisms potentially in Chinese wolfberry (Lycium chinese, LC) and black wolfberry (L. ruthenicum, LR) under salinity stress, by analyzing their transcriptome, metabolome, and hormone changes. The hormone detection analysis revealed that the ABA content was significantly lower in LR than LC under normal condition, and increased sharply under salinity stress in LR but not in LC. The transcriptome analysis showed that the salinity-responsive genes in wolfberry were mainly enriched in MAPK signaling, amino sugar and nucleotide sugar metabolism, carbon metabolism, and plant hormone signal transduction pathways in LC, while mainly related to carbon metabolism and protein processing in endoplasmic reticulum in LR. Metabolome results indicated that LR harbored higher flavone and flavonoid contents than LC under normal condition. However, the flavone and flavonoid contents were hardly changed in LR, but increased substantially in LC when exposed to salinity stress. CONCLUSIONS: Our results adds ABA and flavone to mechanism understanding of salinity tolerance in wolfberry. In addition, flavone plays a positive role in resistance to salinity stress in wolfberry.
Assuntos
Lycium/fisiologia , Metaboloma/fisiologia , Estresse Salino/genética , Transcriptoma/fisiologia , Lycium/genética , Especificidade da EspécieRESUMO
Wolfberry, also known as goji berry or Lycium barbarum, is a highly valued fruit with significant health benefits and nutritional value. For more efficient and comprehensive usage of published L. barbarum genomic data, we established the Wolfberry database. The utility of the Wolfberry Genome Database (WGDB) is highlighted through the Genome browser, which enables the user to explore the L. barbarum genome, browse specific chromosomes, and access gene sequences. Gene annotation features provide comprehensive information about gene functions, locations, expression profiles, pathway involvement, protein domains, and regulatory transcription factors. The transcriptome feature allows the user to explore gene expression patterns using transcripts per kilobase million (TPM) and fragments per kilobase per million mapped reads (FPKM) metrics. The Metabolism pathway page provides insights into metabolic pathways and the involvement of the selected genes. In addition to the database content, we also introduce six analysis tools developed for the WGDB. These tools offer functionalities for gene function prediction, nucleotide and amino acid BLAST analysis, protein domain analysis, GO annotation, and gene expression pattern analysis. The WGDB is freely accessible at https://cosbi7.ee.ncku.edu.tw/Wolfberry/. Overall, WGDB serves as a valuable resource for researchers interested in the genomics and transcriptomics of L. barbarum. Its user-friendly web interface and comprehensive data facilitate the exploration of gene functions, regulatory mechanisms, and metabolic pathways, ultimately contributing to a deeper understanding of wolfberry and its potential applications in agronomy and nutrition.
RESUMO
Wolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.
Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Lycium/genética , Solanaceae/genética , Sequenciamento Completo do Genoma/métodos , África , Ásia , Evolução Molecular , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Geografia , Lycium/classificação , Lycium/metabolismo , América do Norte , Filogenia , Poliploidia , Polissacarídeos/metabolismo , Solanaceae/classificação , Solanaceae/metabolismo , Especificidade da EspécieRESUMO
Red wolfberry (or goji berry, Lycium barbarum; LB) is an important agricultural product with a high content of pharmacologically important secondary metabolites such as phenylpropanoids. A close relative, black wolfberry (L. ruthenicum; LR), endemic to the salinized deserts of northwestern China, is used only locally. The two fruits exhibit many morphological and phytochemical differences, but genetic mechanisms underlying them remain poorly explored. In order to identify the genes of interest for further studies, we studied transcriptomic (Illumina HiSeq) and metabolomic (LC-MS) profiles of the two fruits during five developmental stages (young to ripe). As expected, we identified much higher numbers of significantly differentially regulated genes (DEGs) than metabolites. The highest numbers were identified in pairwise comparisons including the first stage for both species, but total numbers were consistently somewhat lower for the LR. The number of differentially regulated metabolites in pairwise comparisons of developmental stages varied from 66 (stages 3 vs 4) to 133 (stages 2 vs 5) in both species. We identified a number of genes (e.g. AAT1, metE, pip) and metabolites (e.g. rutin, raffinose, galactinol, trehalose, citrulline and DL-arginine) that may be of interest to future functional studies of stress adaptation in plants. As LB is also highly suitable for combating soil desertification and alleviating soil salinity/alkalinity/pollution, its potential for human use may be much wider than its current, highly localized, relevance.
Assuntos
Frutas/genética , Frutas/metabolismo , Lycium/genética , Lycium/metabolismo , Metaboloma , Transcriptoma , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Redes e Vias Metabólicas , Metabolômica/métodos , Anotação de Sequência MolecularRESUMO
Goji berries have been used as food and medicine for millennia. Due to their high morphological similarity, fruits of two distinct species belonging to the family Solanaceae, Lycium barbarum (LB) and Lycium chinense (Chinese boxthorn), are usually marketed together as goji berries, but nearly 90% of all commercially available goji berries belong to the former species. A third closely related species, a wild perennial thorny shrub native to north-western China, Lycium ruthenicum (LR; known as Russian box thorn, and its fruit as black wolfberry), has become a popular choice for combating soil desertification and for alleviating soil salinity/alkalinity due to its high resistance to the harsh environment of saline deserts. Despite the phylogenetic closeness of LB and LR, their fruits are very different. To identify the genes involved in these distinct phenotypes, here we studied expression patterns of 22 transcriptional regulators that may be crucial drivers of these differences during five developmental stages. BAM1 may contribute to higher sugar content in LB. High expression of BFRUCT in ripe LR is likely to be an evolutionary adaptation to fruit ripening in an arid environment. Two arogenate dehydratase paralogues, CHS and LDOX, are probably crucial elements of the mechanism by which LR accumulates much higher levels of anthocyanin. DXS2 (carotenoid accumulation in LB) and CCD4 (carotenoid degradation in ripe LR fruit) may be crucial drivers behind the much higher content of carotenoids in LB. EIL3 and ERF5 are two transcription factors that may contribute to the higher abiotic stress resilience of LR. GATA22-like appears to have more important roles in growth than ripening in LB fruit and vice versa in LR. HAT5-like exhibited opposite temporal patterns in two fruits: high in the 1st stage in LB and high in the 5th stage in LR. PED1 was expressed at a much lower level in LR. Finally, we hypothesise that the poorly functionally characterised SCL32 gene may play a part in the increased resistance to environmental stress of LR. We suggest that BAM1, BFRUCT, EIL3, ERF5, ADT paralogues (for functional redundancy), PED1, GATA22-like, HAT5-like and SCL32 warrant further functional studies.
Assuntos
Frutas/metabolismo , Lycium/metabolismo , China , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Lycium/genéticaRESUMO
This study aimed at assessing the climatic factors influencing the wolfberry fruit morphology, and the composition of its nutritious metabolites. The cultivar Ningqi1, widely grown in Northwest China was collected from three typical ecological growing counties with contrasting climatic conditions: Ningxia Zhongning (NF), Xinjiang Jinghe (XF) and Qinghai Nomuhong (QF). During the ripening period, 45 fruits from different plantations at each location were sampled. A total of 393 metabolites were detected in all samples through the widely targeted metabolomics approach and grouped into 19 known classes. Fruits from QF were the biggest followed by those from XF and NF. The altitude, relative humidity and light intensity had negative and strong correlations with most of the metabolites, suggesting that growing wolfberry in very high altitudes and under high light intensity is detrimental for the fruit nutritional quality. Soil moisture content is highly and negatively correlated with vitamins, organic acids and carbohydrates while moderately and positively correlated with other classes of metabolites. In contrast, air and soil temperatures exhibited positive correlation with majority of the metabolites. Overall, our results suggest high soil and air temperatures, low altitude and light intensity and moderate soil moisture, as the suitable conditions to produce Lycium fruits with high content of nutritious metabolites.
RESUMO
Lycium ruthenicum Murry. is a highly nutritional cash crop due to its fruit abundant anthocyanins. To understand the complex metabolic networks underlying the color formation in black and white fruits of L. ruthenicum, we conducted transcriptome and flavonoid metabolic profiling to identify the candidate genes possibly involved in flavonoid biosynthesis. As a result, 147 flavonoids were identified and there was almost no anthocyanin in white fruits, while luteolin, kaempferol, and quercetin derivatives showed markedly higher abundance. Furthermore, applying weighted gene co-expression network analyses, 3 MYB, 2 bHLH, 1WRKY and 1 NAC transcription factor, associated with anthocyanin biosynthesis were identified. A bHLH transcription factor, LrAN1b showed the greatest correlations with anthocyanin accumulation with no expression in white fruits. In addition, gene function analysis and qRT-PCR experiments identified a new activated anthocyanin MYB transcription factor designed as LrAN2-like. Yeast two-hybrid and transient tobacco overexpression experiments showed that LrAN1b could interact with LrAN2-like and LrAN11 to form MBW complex to activate the anthocyanin pathway. The yeast one-hybrid experiment indicated that LrAN2-like bonded anthocyanin structural gene LrDFR and LrANS promoters. Heterologous expression of LrAN1b in tobacco can significantly increase the anthocyanin content of tobacco florals and capsules, and activate anthocyanin synthesis related genes. Taken together, an anthocyanin regulatory network model in L. ruthenicum fruit was proposed firstly and we speculate that the white fruit phenotype was due to abnormal expression of LrAN1b. The findings provide new insight into the underlying mechanism of flavonoids, laying the foundation for future functional and molecular biological research in L. ruthenicum.
RESUMO
Wolfberry (Lycium Linn. 2n = 24) fruit, Gouqizi, is a perennial shrub, traditional food and medicinal plant resource in China. Leaf and fruit related characteristics are economically important traits that are the focus for genetic improvement, but few studies into the molecular genetics of this crop have been reported to date. Here, an F1 population (302 individuals) derived from a cross between "NO.1 Ningqi" (Lycium barbarum L.) and "Chinese gouqi" (Lycium chinese Mill.) was constructed. We recorded fruit weight, longitude, diameter and index along with leaf length, width and index for three consecutive years from 2015 to 2017. Based on this population and these phenotypic data, we constructed the first high-density genetic map of Lycium using specific length amplified fragment sequencing (SLAF-seq) and analyzed quantitative trait loci (QTLs). The map contains 6733 single nucleotide polymorphisms and 12 linkage groups (LG) with a total map distance of 1702.45 cM and an average map distance of 0.253 cM. A total of 55 QTLs were mapped for more than 2 years, of which 18 stable QTLs for fruit index on LG 11, spanning an interval of 73.492-90.945 cM, were detected. qFI11-15 for fruit index was an impressive QTL with logarithm of odds (LOD) and proportion of variance explained (PEV) values reaching 11.07 and 19.7%, respectively. The QTLs on LG 11 were gathered tightly, having an average interval of less than 1 cM per QTL, suggesting that there might be a cluster region controlling fruit index. Remarkably, qLI10-2 and qLI11-2 for leaf index were detectable for 3 years. These results give novel insight into the genetic control of leaf and fruit related traits in Lycium and provide robust support for undertaking further positional cloning studies and implementing marker-assisted selection in seedlings.