Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Biol Chem ; 297(4): 101149, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473994

RESUMO

Metabolic flexibility is the capacity of cells to alter fuel metabolism in response to changes in metabolic demand or nutrient availability. It is critical for maintaining cellular bioenergetics and is involved in the pathogenesis of cardiovascular disease and metabolic disorders. However, the regulation and function of metabolic flexibility in lymphatic endothelial cells (LECs) remain unclear. We have previously shown that glycolysis is the predominant metabolic pathway to generate ATP in LECs and that fibroblast growth factor receptor (FGFR) signaling controls lymphatic vessel formation by promoting glycolysis. Here, we found that chemical inhibition of FGFR activity or knockdown of FGFR1 induces substantial upregulation of fatty acid ß-oxidation (FAO) while reducing glycolysis and cellular ATP generation in LECs. Interestingly, such compensatory elevation was not observed in glucose oxidation and glutamine oxidation. Mechanistic studies show that FGFR blockade promotes the expression of carnitine palmitoyltransferase 1A (CPT1A), a rate-limiting enzyme of FAO; this is achieved by dampened extracellular signal-regulated protein kinase activation, which in turn upregulates the expression of the peroxisome proliferator-activated receptor alpha. Metabolic analysis further demonstrates that CPT1A depletion decreases total cellular ATP levels in FGFR1-deficient rather than wildtype LECs. This result suggests that FAO, which makes a negligible contribution to cellular energy under normal conditions, can partially compensate for energy deficiency caused by FGFR inhibition. Consequently, CPT1A silencing potentiates the effect of FGFR1 knockdown on impeding LEC proliferation and migration. Collectively, our study identified a key role of metabolic flexibility in modulating the effect of FGFR signaling on LEC growth.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Glicólise , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Técnicas de Silenciamento de Genes , Humanos , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
2.
Curr Atheroscler Rep ; 24(5): 323-336, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332444

RESUMO

PURPOSE OF REVIEW: As both a cholesterol acceptor and carrier in the reverse cholesterol transport (RCT) pathway, high-density lipoprotein (HDL) is putatively atheroprotective. However, current pharmacological therapies to increase plasma HDL cholesterol (HDL-c) concentration have paradoxically failed to prevent or reduce atherosclerosis and cardiovascular disease (CVD). Given that free cholesterol (FC) transfer between surfaces of lipoproteins and cells is reversible, excess plasma FC can be transferred to the cells of peripheral tissue sites resulting in atherosclerosis. Here, we summarize potential mechanisms contributing to this paradox and highlight the role of excess free cholesterol (FC) bioavailability in atherosclerosis vs. atheroprotection. RECENT FINDINGS: Recent findings have established a complex relationship between HDL-c concentration and atherosclerosis. Systemic scavenger receptor class B type 1 (SR-B1) knock out (KO) mice exhibit with increased diet-induced atherosclerosis despite having an elevated plasma HDL-c concentration compared to wild type (WT) mice. The greater bioavailability of HDL-FC in SR-B1 vs. WT mice is associated with a higher FC content in multiple cell types and tissue sites. These results suggest that dysfunctional HDL with high FC bioavailability is atheroprone despite high HDL-c concentration. Past oversimplification of HDL-c involvement in cholesterol transport has led to the failures in HDL targeted therapy. Evidence suggests that FC-mediated functionality of HDL is of higher importance than its quantity; as a result, deciphering the regulatory mechanisms by which HDL-FC bioavailability can induce atherosclerosis can have far-reaching clinical implications.


Assuntos
Aterosclerose , Colesterol , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , HDL-Colesterol , Humanos , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Knockout , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
3.
J Lipid Res ; 61(5): 667-675, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31471447

RESUMO

Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis.jlr;61/5/667/F1F1f1.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Colesterol/metabolismo , Hematopoese , Microdomínios da Membrana/metabolismo , Animais , Doenças Cardiovasculares/fisiopatologia , Humanos
4.
Curr Atheroscler Rep ; 23(1): 1, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33230630

RESUMO

PURPOSE OF REVIEW: The goal of this manuscript is to summarize the current understanding of the secreted APOA1 binding protein (AIBP), encoded by NAXE, in angiogenesis, hematopoiesis, and inflammation. The studies on AIBP illustrate a critical connection between lipid metabolism and the aforementioned endothelial and immune cell biology. RECENT FINDINGS: AIBP dictates both developmental processes such as angiogenesis and hematopoiesis, and pathological events such as inflammation, tumorigenesis, and atherosclerosis. Although cholesterol efflux dictates AIBP-mediated lipid raft disruption in many of the cell types, recent studies document cholesterol efflux-independent mechanism involving Cdc42-mediated cytoskeleton remodeling in macrophages. AIBP disrupts lipid rafts and impairs raft-associated VEGFR2 but facilitates non-raft-associated NOTCH1 signaling. Furthermore, AIBP can induce cholesterol biosynthesis gene SREBP2 activation, which in turn transactivates NOTCH1 and supports specification of hematopoietic stem and progenitor cells (HSPCs). In addition, AIBP also binds TLR4 and represses TLR4-mediated inflammation. In this review, we summarize the latest research on AIBP, focusing on its role in cholesterol metabolism and the attendant effects on lipid raft-regulated VEGFR2 and non-raft-associated NOTCH1 activation in angiogenesis, SREBP2-upregulated NOTCH1 signaling in hematopoiesis, and TLR4 signaling in inflammation and atherogenesis. We will discuss its potential therapeutic applications in angiogenesis and inflammation due to selective targeting of activated cells.


Assuntos
Aterosclerose , Hematopoese , Inflamação/metabolismo , Neovascularização Fisiológica , Racemases e Epimerases/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação/genética , Racemases e Epimerases/genética
5.
Curr Opin Lipidol ; 30(3): 218-223, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30985364

RESUMO

PURPOSE OF REVIEW: Recent studies demonstrate an important role of the secreted apolipoprotein A-I binding protein (AIBP) in regulation of cholesterol efflux and lipid rafts. The article discusses these findings in the context of angiogenesis and inflammation. RECENT FINDINGS: Lipid rafts are cholesterol-rich and sphingomyelin-rich membrane domains in which many receptor complexes assemble upon activation. AIBP mediates selective cholesterol efflux, in part via binding to toll-like receptor-4 (TLR4) in activated macrophages and microglia, and thus reverses lipid raft increases in activated cells. Recent articles report AIBP regulation of vascular endothelial growth factor receptor-2, Notch1 and TLR4 function. In zebrafish and mouse animal models, AIBP deficiency results in accelerated angiogenesis, increased inflammation and exacerbated atherosclerosis. Spinal delivery of recombinant AIBP reduces neuraxial inflammation and reverses persistent pain state in a mouse model of chemotherapy-induced polyneuropathy. Inhalation of recombinant AIBP reduces lipopolysaccharide-induced acute lung injury in mice. These findings are discussed in the perspective of AIBP's proposed other function, as an NAD(P)H hydrate epimerase, evolving into a regulator of cholesterol trafficking and lipid rafts. SUMMARY: Novel findings of AIBP regulatory circuitry affecting lipid rafts and related cellular processes may provide new therapeutic avenues for angiogenic and inflammatory diseases.


Assuntos
Microdomínios da Membrana/metabolismo , Neovascularização Fisiológica , Fosfoproteínas/metabolismo , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Humanos , Inflamação/metabolismo
6.
Circulation ; 138(9): 913-928, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29545372

RESUMO

BACKGROUND: Angiogenesis is integral for embryogenesis, and targeting angiogenesis improves the outcome of many pathological conditions in patients. TBX20 is a crucial transcription factor for embryonic development, and its deficiency is associated with congenital heart disease. However, the role of TBX20 in angiogenesis has not been described. METHODS: Loss- and gain-of-function approaches were used to explore the role of TBX20 in angiogenesis both in vitro and in vivo. Angiogenesis gene array was used to identify key downstream targets of TBX20. RESULTS: Unbiased gene array survey showed that TBX20 knockdown profoundly reduced angiogenesis-associated PROK2 (prokineticin 2) gene expression. Indeed, loss of TBX20 hindered endothelial cell migration and in vitro angiogenesis. In a murine angiogenesis model using subcutaneously implanted Matrigel plugs, we observed that TBX20 deficiency markedly reduced PROK2 expression and restricted intraplug angiogenesis. Furthermore, recombinant PROK2 administration enhanced angiogenesis and blood flow recovery in murine hind-limb ischemia. In zebrafish, transient knockdown of tbx20 by morpholino antisense oligos or genetic disruption of tbx20 by CRISPR/Cas9 impaired angiogenesis. Furthermore, loss of prok2 or its cognate receptor prokr1a also limited angiogenesis. In contrast, overexpression of prok2 or prokr1a rescued the impaired angiogenesis in tbx20-deficient animals. CONCLUSIONS: Our study identifies TBX20 as a novel transcription factor regulating angiogenesis through the PROK2-PROKR1 (prokineticin receptor 1) pathway in both development and disease and reveals a novel mode of angiogenic regulation whereby the TBX20-PROK2-PROKR1 signaling cascade may act as a "biological capacitor" to relay and sustain the proangiogenic effect of vascular endothelial growth factor. This pathway may be a therapeutic target in the treatment of diseases with dysregulated angiogenesis.


Assuntos
Hormônios Gastrointestinais/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Indutores da Angiogênese/farmacologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Hormônios Gastrointestinais/genética , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/tratamento farmacológico , Isquemia/genética , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Fisiológica/efeitos dos fármacos , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Proteínas com Domínio T/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
Circ Res ; 120(11): 1727-1739, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28325782

RESUMO

RATIONALE: Angiogenesis improves perfusion to the ischemic tissue after acute vascular obstruction. Angiogenesis in pathophysiological settings reactivates signaling pathways involved in developmental angiogenesis. We showed previously that AIBP (apolipoprotein A-I [apoA-I]-binding protein)-regulated cholesterol efflux in endothelial cells controls zebra fish embryonic angiogenesis. OBJECTIVE: This study is to determine whether loss of AIBP affects angiogenesis in mice during development and under pathological conditions and to explore the underlying molecular mechanism. METHODS AND RESULTS: In this article, we report the generation of AIBP knockout (Apoa1bp-/-) mice, which are characterized of accelerated postnatal retinal angiogenesis. Mechanistically, AIBP triggered relocalization of γ-secretase from lipid rafts to nonlipid rafts where it cleaved Notch. Consistently, AIBP treatment enhanced DLL4 (delta-like ligand 4)-stimulated Notch activation in human retinal endothelial cells. Increasing high-density lipoprotein levels in Apoa1bp-/- mice by crossing them with apoA-I transgenic mice rescued Notch activation and corrected dysregulated retinal angiogenesis. Notably, the retinal vessels in Apoa1bp-/- mice manifested normal pericyte coverage and vascular integrity. Similarly, in the subcutaneous Matrigel plug assay, which mimics ischemic/inflammatory neovascularization, angiogenesis was dramatically upregulated in Apoa1bp-/- mice and associated with a profound inhibition of Notch activation and reduced expression of downstream targets. Furthermore, loss of AIBP increased vascular density and facilitated the recovery of blood vessel perfusion function in a murine hindlimb ischemia model. In addition, AIBP expression was significantly increased in human patients with ischemic cardiomyopathy. CONCLUSIONS: Our data reveal a novel mechanistic connection between AIBP-mediated cholesterol metabolism and Notch signaling, implicating AIBP as a possible druggable target to modulate angiogenesis under pathological conditions.


Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Proteínas de Transporte/biossíntese , Neovascularização Fisiológica/fisiologia , Fosfoproteínas/biossíntese , Receptores Notch/biossíntese , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Animais , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Membro Posterior/patologia , Humanos , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Camundongos Knockout , Racemases e Epimerases , Retina/metabolismo , Retina/patologia , Peixe-Zebra
8.
Nature ; 498(7452): 118-22, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23719382

RESUMO

Cholesterol is a structural component of the cell and is indispensable for normal cellular function, although its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (apoA-I) and the apoA-I-containing high-density lipoprotein (HDL). Maintaining efficient cholesterol efflux is essential for normal cellular function. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that apoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells to HDL and thereby regulates angiogenesis. AIBP- and HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 (also known as KDR) dimerization and signalling and inhibits vascular endothelial growth factor-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Notably, Aibp, a zebrafish homologue of human AIBP, regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell-autonomous regulator of angiogenesis. aibp knockdown results in dysregulated sprouting/branching angiogenesis, whereas forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1 (also known as Abca1a) Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1 Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from endothelial cells and that effective cholesterol efflux is critical for proper angiogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Vasos Sanguíneos/embriologia , Proteínas de Transporte/genética , Colesterol/análise , Proteínas de Ligação a DNA , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipoproteínas HDL/metabolismo , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Multimerização Proteica , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
9.
J Lipid Res ; 59(5): 854-863, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29559522

RESUMO

Apolipoprotein A-I binding protein (AIBP) has been shown to augment cholesterol efflux from endothelial cells and macrophages. In zebrafish and mice, AIBP-mediated regulation of cholesterol levels in the plasma membrane of endothelial cells controls angiogenesis. The goal of this work was to evaluate metabolic changes and atherosclerosis in AIBP loss-of-function and gain-of-function animal studies. Here, we show that Apoa1bp-/-Ldlr-/- mice fed a high-cholesterol, high-fat diet had exacerbated weight gain, liver steatosis, glucose intolerance, hypercholesterolemia, hypertriglyceridemia, and larger atherosclerotic lesions compared with Ldlr-/- mice. Feeding Apoa1bp-/-Ldlr-/- mice a high-cholesterol, normal-fat diet did not result in significant differences in lipid levels or size of atherosclerotic lesions from Ldlr-/- mice. Conversely, adeno-associated virus-mediated overexpression of AIBP reduced hyperlipidemia and atherosclerosis in high-cholesterol, high-fat diet-fed Ldlr-/- mice. Injections of recombinant AIBP reduced aortic inflammation in Ldlr-/- mice fed a short high-cholesterol, high-fat diet. Conditional overexpression of AIBP in zebrafish also reduced diet-induced vascular lipid accumulation. In experiments with isolated macrophages, AIBP facilitated cholesterol efflux to HDL, reduced lipid rafts content, and inhibited inflammatory responses to lipopolysaccharide.jlr Our data demonstrate that AIBP confers protection against diet-induced metabolic abnormalities and atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Proteínas de Transporte/metabolismo , Síndrome Metabólica/metabolismo , Fosfoproteínas/metabolismo , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/deficiência , Racemases e Epimerases , Receptores de LDL/deficiência , Receptores de LDL/metabolismo
10.
J Cell Mol Med ; 22(11): 5208-5219, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30589494

RESUMO

Acute myocardial infarction (MI) is a leading cause of morbidity and mortality in the world. Traditional method to induce MI by left coronary artery (LCA) ligation is typically performed by an invasive approach that requires ventilation and thoracotomy, causing serious injuries in animals undergoing this surgery. We attempted to develop a minimally invasive method (MIM) to induce MI in mice. Under the guide of ultrasound, LCA ligation was performed in mice without ventilation and chest-opening. Compared to sham mice, MIM induced MI in mice as determined by triphenyltetrazolium chloride staining and Masson staining. Mice with MIM surgery revealed the reductions of LVEF, LVFS, E/A and ascending aorta (AAO) blood flow, and the elevations of S-T segment and serum cTn-I levels at 24 post-operative hours. The effects of MI induced by MIM were comparable to the effects of MI produced by traditional method in mice. Importantly, MIM increased the survival rates and caused less inflammation after the surgery of LCA ligation, compared to the surgery of traditional method. Further, MIM induced angiogenesis and apoptosis in ischaemic hearts from mice at postoperative 28 days as similarly as traditional method did. Finally, the MIM model was able to develop into the myocardial ischaemia/reperfusion model by using a balloon catheter with minor modifications. The MI model is able to be efficiently induced by a minimally invasive approach in mice without ventilation and chest-opening. This new model is potentially to be used in studying ischaemia-related heart diseases.


Assuntos
Vasos Coronários/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Infarto do Miocárdio/cirurgia , Isquemia Miocárdica/cirurgia , Animais , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Humanos , Ligadura/métodos , Camundongos , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , Toracotomia/métodos
11.
Arterioscler Thromb Vasc Biol ; 37(10): 1860-1868, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28775072

RESUMO

OBJECTIVE: Lmo (LIM-domain-only)2 transcription factor is involved in hematopoiesis and vascular remodeling. Sphk (sphingosine kinase)1 phosphorylates sphingosine to S1P (sphingosine-1-phosphate). We hypothesized that Lmo2 regulates Sphk1 to promote endothelial cell (EC) migration and vascular development. APPROACH AND RESULTS: Lmo2 and Sphk1 knockdown (KD) were performed in Tg(fli1:EGFP) y1 zebrafish and in human umbilical vein EC. Rescue of phenotypes or overexpression of these factors were achieved using mRNA encoding Lmo2 or Sphk1. EC proliferation in vivo was assessed by BrdU (bromodeoxyuridine) immunostaining and fluorescence-activated cell sorter analysis of dissociated Tg(fli1:EGFP) y1 embryos. Cell migration was assessed by scratch assay in human umbilical vein EC and mouse aortic rings. Lmo2 interactions with Sphk1 promoter were assessed by ChIP-PCR (chromatin immunoprecipitation-polymerase chain reaction). Lmo2 or Sphk1 KD reduced number and length of intersegmental vessels. There was no reduction in the numbers of GFP+ (green fluorescent protein) ECs after Lmo2 KD. However, reduced numbers of BrdU+GFP+ nuclei were observed along the dysmorphic intersegmental vessels, accumulating instead at the sprouting origin of the intersegmental vessels. This anomaly was likely because of impaired EC migration, which was confirmed in migration assays using Lmo2 KD human umbilical vein ECs and mouse aortic rings. Both in vivo and in vitro, Lmo2 KD reduced Sphk1 gene expression, associated with less Lmo2 binding to the Sphk1 promoter as assessed by ChIP-PCR. Sphk1 mRNA rescued the Lmo2 KD phenotype. CONCLUSIONS: Our data showed that Lmo2 is necessary for Sphk1 gene expression in ECs. Lmo2 KD reduced Lmo2-Sphk1 gene interaction, impaired intersegmental vessels formation, and reduced cell migration. We identified for the first time Sphk1 as downstream effector of Lmo2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Células Endoteliais/metabolismo , Proteínas com Domínio LIM/metabolismo , Neovascularização Fisiológica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Células Endoteliais/citologia , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Peixe-Zebra
12.
Dev Biol ; 404(2): 49-60, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26004360

RESUMO

Angiogenesis relies on specialized endothelial tip cells to extend toward guidance cues in order to direct growing blood vessels. Although many of the signaling pathways that control this directional endothelial sprouting are well known, the specific cellular mechanisms that mediate this process remain to be fully elucidated. Here, we show that Polo-like kinase 2 (PLK2) regulates Rap1 activity to guide endothelial tip cell lamellipodia formation and subsequent angiogenic sprouting. Using a combination of high-resolution in vivo imaging of zebrafish vascular development and a human umbilical vein endothelial cell (HUVEC) in vitro cell culture system, we observed that loss of PLK2 function resulted in a reduction in endothelial cell sprouting and migration, whereas overexpression of PLK2 promoted angiogenesis. Furthermore, we discovered that PLK2 may control angiogenic sprouting by binding to PDZ-GEF to regulate RAP1 activity during endothelial cell lamellipodia formation and extracellular matrix attachment. Consistent with these findings, constitutively active RAP1 could rescue the endothelial cell sprouting defects observed in zebrafish and HUVEC PLK2 knockdowns. Overall, these findings reveal a conserved PLK2-RAP1 pathway that is crucial to regulate endothelial tip cell behavior in order to ensure proper vascular development and patterning in vertebrates.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/genética , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/embriologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Pseudópodes/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais
13.
Circulation ; 131(9): 805-14, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25550450

RESUMO

BACKGROUND: Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase-derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element-binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium. METHODS AND RESULTS: Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II-infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell-specific SREBP2 transgenic mice, locked nucleic acid-modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II-induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell-dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1ß. CONCLUSIONS: Our findings suggest that SREBP2-miR-92a-inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction.


Assuntos
Endotélio Vascular/metabolismo , Imunidade Inata/genética , Inflamassomos/metabolismo , MicroRNAs/biossíntese , Estresse Oxidativo/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia , Ativação Transcricional , Idoso , Angiotensina II/toxicidade , Animais , Doença das Coronárias/sangue , Doença das Coronárias/fisiopatologia , Células Endoteliais/metabolismo , Feminino , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/toxicidade , Hipercolesterolemia/genética , Interleucina-1beta/sangue , Fator 4 Semelhante a Kruppel , Lipoproteínas LDL/toxicidade , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Pessoa de Meia-Idade , Compostos Organometálicos/farmacologia , Estresse Oxidativo/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Salicilatos/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
14.
Circ Res ; 108(2): 235-48, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21252151

RESUMO

Oxidation reactions are vital parts of metabolism and signal transduction. However, they also produce reactive oxygen species, which damage lipids, proteins and DNA, generating "oxidation-specific" epitopes. In this review, we discuss the hypothesis that such common oxidation-specific epitopes are a major target of innate immunity, recognized by a variety of "pattern recognition receptors" (PRRs). By analogy with microbial "pathogen-associated molecular patterns" (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent "danger (or damage)-associated molecular patterns" (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Furthermore, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs provide a strong secondary selecting pressure for the same set of oxidation-specific PRRs as well. Because lipid peroxidation is ubiquitous and a major component of the inflammatory state associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs, and thus the target of multiple arcs of innate immunity, provides novel insights into the pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such as CD36, toll-like receptor-4, natural antibodies, and C-reactive protein recognize common oxidation-specific DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of immune responses, from expression of proinflammatory genes to excessive intracellular lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to improved understanding of inflammation and atherogenesis and suggest new approaches to diagnosis and therapy.


Assuntos
Epitopos/fisiologia , Imunidade Inata/fisiologia , Receptores de Reconhecimento de Padrão/fisiologia , Animais , Aterosclerose/fisiopatologia , Humanos , Oxirredução , Fosforilação Oxidativa
15.
Nat Commun ; 14(1): 2390, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185814

RESUMO

A comprehensive understanding of endothelial cell lineage specification will advance cardiovascular regenerative medicine. Recent studies found that unique epigenetic signatures preferentially regulate cell identity genes. We thus systematically investigate the epigenetic landscape of endothelial cell lineage and identify MECOM to be the leading candidate as an endothelial cell lineage regulator. Single-cell RNA-Seq analysis verifies that MECOM-positive cells are exclusively enriched in the cell cluster of bona fide endothelial cells derived from induced pluripotent stem cells. Our experiments demonstrate that MECOM depletion impairs human endothelial cell differentiation, functions, and Zebrafish angiogenesis. Through integrative analysis of Hi-C, DNase-Seq, ChIP-Seq, and RNA-Seq data, we find MECOM binds enhancers that form chromatin loops to regulate endothelial cell identity genes. Further, we identify and verify the VEGF signaling pathway to be a key target of MECOM. Our work provides important insights into epigenetic regulation of cell identity and uncovered MECOM as an endothelial cell lineage regulator.


Assuntos
Células Endoteliais , Epigênese Genética , Animais , Humanos , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Endoteliais/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429071

RESUMO

Accumulating evidence indicates that the APOA1 binding protein (AIBP)-a secreted protein-plays a profound role in lipid metabolism. Interestingly, AIBP also functions as an NAD(P)H-hydrate epimerase to catalyze the interconversion of NAD(P)H hydrate [NAD(P)HX] epimers and is renamed as NAXE. Thus, we call it NAXE hereafter. We investigated its role in NAD(P)H-involved metabolism in murine cardiomyocytes, focusing on the metabolism of hexose, lipids, and amino acids as well as mitochondrial redox function. Unbiased metabolite profiling of cardiac tissue shows that NAXE knockout markedly upregulates the ketone body 3-hydroxybutyric acid (3-HB) and increases or trends increasing lipid-associated metabolites cholesterol, α-linolenic acid and deoxycholic acid. Paralleling greater ketone levels, ChemRICH analysis of the NAXE-regulated metabolites shows reduced abundance of hexose despite similar glucose levels in control and NAXE-deficient blood. NAXE knockout reduces cardiac lactic acid but has no effect on the content of other NAD(P)H-regulated metabolites, including those associated with glucose metabolism, the pentose phosphate pathway, or Krebs cycle flux. Although NAXE is present in mitochondria, it has no apparent effect on mitochondrial oxidative phosphorylation. Instead, we detected more metabolites that can potentially improve cardiac function (3-HB, adenosine, and α-linolenic acid) in the Naxe-/- heart; these mice also perform better in aerobic exercise. Our data reveal a new role of NAXE in cardiac ketone and lipid metabolism.


Assuntos
Cetonas , NAD , Animais , Camundongos , Ácido alfa-Linolênico , NAD/metabolismo , Racemases e Epimerases , Respiração Celular
17.
J Biol Chem ; 285(42): 32343-51, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20710028

RESUMO

A novel hypercholesterolemic zebrafish model has been developed to study early events of atherogenesis. This model utilizes optically transparent zebrafish larvae, fed a high cholesterol diet (HCD), to monitor processes of vascular inflammation in live animals. Because lipoprotein oxidation is an important factor in the development of atherosclerosis, in this study, we characterized the oxidized lipid milieu in HCD-fed zebrafish larvae. Using liquid chromatography-mass spectrometry, we show that feeding an HCD for only 2 weeks resulted in up to 70-fold increases in specific oxidized cholesteryl esters, identical to those present in human minimally oxidized LDL and in murine atherosclerotic lesions. The levels of oxidized phospholipids, such as 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine, and of various lysophosphatidylcholines were also significantly elevated. Moreover, lipoproteins isolated from homogenates of HCD-fed larvae induced cell spreading as well as ERK1/2, Akt, and JNK phosphorylation in murine macrophages. Removal of apoB-containing lipoproteins from the zebrafish homogenates with an anti-human LDL antibody, as well as reducing lipid hydroperoxides with ebselen, resulted in inhibition of macrophage activation. The TLR4 deficiency in murine macrophages prevented their activation with zebrafish lipoproteins. Using biotinylated homogenates of HCD-fed larvae, we demonstrated that their components bound to murine macrophages, and this binding was effectively competed by minimally oxidized LDL but not by native LDL. These data provide evidence that molecular lipid determinants of proatherogenic macrophage phenotypes are present in large quantities in hypercholesterolemic zebrafish larvae and support the use of the HCD-fed zebrafish as a valuable model to study early events of atherogenesis.


Assuntos
Ésteres do Colesterol/metabolismo , Colesterol na Dieta/metabolismo , Larva/metabolismo , Macrófagos/metabolismo , Fosfolipídeos/metabolismo , Peixe-Zebra , Animais , Linhagem Celular , Ésteres do Colesterol/química , Dieta , Humanos , Macrófagos/citologia , Camundongos , Oxirredução , Fosfolipídeos/química
18.
Circ Res ; 104(8): 952-60, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19265037

RESUMO

Lipid accumulation in arteries induces vascular inflammation and atherosclerosis, the major cause of heart attack and stroke in humans. Extreme hyperlipidemia induced in mice and rabbits enables modeling many aspects of human atherosclerosis, but microscopic examination of plaques is possible only postmortem. Here we report that feeding adult zebrafish (Danio rerio) a high-cholesterol diet (HCD) resulted in hypercholesterolemia, remarkable lipoprotein oxidation, and fatty streak formation in the arteries. Feeding an HCD supplemented with a fluorescent cholesteryl ester to optically transparent fli1:EGFP zebrafish larvae in which endothelial cells express green fluorescent protein (GFP), and using confocal microscopy enabled monitoring vascular lipid accumulation and the endothelial cell layer disorganization and thickening in a live animal. The HCD feeding also increased leakage of a fluorescent dextran from the blood vessels. Administering ezetimibe significantly diminished the HCD-induced endothelial cell layer thickening and improved its barrier function. Feeding HCD to lyz:DsRed2 larvae in which macrophages and granulocytes express DsRed resulted in the accumulation of fluorescent myeloid cells in the vascular wall. Using a fluorogenic substrate for phospholipase A(2) (PLA(2)), we observed an increased vascular PLA(2) activity in live HCD-fed larvae compared to control larvae. Furthermore, by transplanting genetically modified murine cells into HCD-fed larvae, we demonstrated that toll-like receptor-4 was required for efficient in vivo lipid uptake by macrophages. These results suggest that the novel zebrafish model is suitable for studying temporal characteristics of certain inflammatory processes of early atherogenesis and the in vivo function of vascular cells.


Assuntos
Aterosclerose/metabolismo , Endotélio Vascular/metabolismo , Hipercolesterolemia/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Peixe-Zebra/metabolismo , Fatores Etários , Envelhecimento/metabolismo , Animais , Animais Geneticamente Modificados , Anticolesterolemiantes/farmacologia , Aterosclerose/etiologia , Aterosclerose/patologia , Azetidinas/farmacologia , Linhagem Celular , Colesterol na Dieta/administração & dosagem , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Ezetimiba , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Hipercolesterolemia/etiologia , Hipercolesterolemia/patologia , Larva/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas/sangue , Proteínas Luminescentes/genética , Macrófagos/transplante , Masculino , Camundongos , Microscopia Confocal , Oxirredução , Permeabilidade , Fosfolipases A2/metabolismo , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
19.
Subcell Biochem ; 51: 229-51, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20213546

RESUMO

Low-density lipoprotein (LDL) is a major extracellular carrier of cholesterol and, as such, plays important physiologic roles in cellular function and regulation of metabolic pathways. However, under pathologic conditions of hyperlipidemia, oxidative stress and/or genetic disorders, specific components of LDL become oxidized or otherwise modified, and the transport of cholesterol by modified LDL is diverted from its physiologic targets toward excessive cholesterol accumulation in macrophages and the formation of macrophage "foam" cells in the vascular wall. This pathologic deposition of modified lipoproteins and the attendant pro-inflammatory reactions in the artery wall lead to the development of atherosclerotic lesions. Continued accumulation of immunogenic modified lipoproteins and a pro-inflammatory milieu result in the progression of atherosclerotic lesions, which may obstruct the arterial lumen and/or eventually rupture and thrombose, causing myocardial infarction or stroke. In this review, we survey mechanisms of LDL modification and macrophage lipoprotein uptake, including results of recent in vivo experiments, and discuss unresolved problems and controversial issues in this growing field. Future directions in studying foam cell formation may include introducing novel animal models, such as hypercholesterolemic zebrafish, enabling dynamic in vivo observation of macrophage lipid uptake.


Assuntos
Aterosclerose/fisiopatologia , LDL-Colesterol/metabolismo , Macrófagos/fisiologia , Animais , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Aterosclerose/etiologia , Antígenos CD36/fisiologia , Colesterol/metabolismo , Células Espumosas/fisiologia , Heme/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Modelos Animais , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Peroxidase/metabolismo , Fagocitose , Pinocitose , Receptores de LDL/fisiologia , Receptores Depuradores Classe A/fisiologia , Receptor 4 Toll-Like/fisiologia , Peixe-Zebra
20.
PLoS One ; 16(4): e0248964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33793635

RESUMO

Emerging studies indicate that APOA-I binding protein (AIBP) is a secreted protein and functions extracellularly to promote cellular cholesterol efflux, thereby disrupting lipid rafts on the plasma membrane. AIBP is also present in the mitochondria and acts as an epimerase, facilitating the repair of dysfunctional hydrated NAD(P)H, known as NAD(P)H(X). Importantly, AIBP deficiency contributes to lethal neurometabolic disorder, reminiscent of the Leigh syndrome in humans. Whereas cyclic NADPHX production is proposed to be the underlying cause, we hypothesize that an unbiased metabolic profiling may: 1) reveal new clues for the lethality, e.g., changes of mitochondrial metabolites., and 2) identify metabolites associated with new AIBP functions. To this end, we performed unbiased and profound metabolic studies of plasma obtained from adult AIBP knockout mice and control littermates of both genders. Our systemic metabolite profiling, encompassing 9 super pathways, identified a total of 640 compounds. Our studies demonstrate a surprising sexual dimorphism of metabolites affected by AIBP deletion, with more statistically significant changes in the AIBP knockout female vs male when compared with the corresponding controls. AIBP knockout trends to reduce cholesterol but increase the bile acid precursor 7-HOCA in female but not male. Complex lipids, phospholipids, sphingomyelin and plasmalogens were reduced, while monoacylglycerol, fatty acids and the lipid soluble vitamins E and carotene diol were elevated in AIBP knockout female but not male. NAD metabolites were not significantly different in AIBP knockout vs control mice but differed for male vs female mice. Metabolites associated with glycolysis and the Krebs cycle were unchanged by AIBP knockout. Importantly, polyamine spermidine, critical for many cellular functions including cerebral cortex synapses, was reduced in male but not female AIBP knockout. This is the first report of a systemic metabolite profile of plasma samples from AIBP knockout mice, and provides a metabolic basis for future studies of AIBP regulation of cellular metabolism and the pathophysiological presentation of AIBP deficiency in patients.


Assuntos
Fosfoproteínas/metabolismo , Racemases e Epimerases/metabolismo , Fatores Sexuais , Animais , Colesterol/metabolismo , Feminino , Metabolismo dos Lipídeos , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA