Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1330021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433840

RESUMO

The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.


Assuntos
Microbioma Gastrointestinal , Síndrome do Desconforto Respiratório , Humanos , Estresse Oxidativo , Apoptose , Autofagia
2.
Ying Yong Sheng Tai Xue Bao ; 32(3): 931-941, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33754559

RESUMO

To clarify the effects of combined applications of chlorocholine chloride (CCC) and nitrogen fertilizer (CN) on nitrogen metabolism and nitrogen use efficiency of summer maize, we conducted a field experiment in Xinxiang experimental station of Chinese Academy of Agricultural Sciences in 2018 and 2019, with four nitrogen application rates (0, 62.5, 125 and 187.5 kg·hm-2), and two maize varieties of Jingnongke 728 (JNK728) and Zhongdan 909 (ZD909). The results showed that across the two years CN-CCC increased maize yield by 7.7% and 5.0% under the nitrogen application rates of 62.5 kg·hm-2 and 125 kg·hm-2, respectively. CN-CCC increased the contents of nitrate reductase, glutamine synthetase, glutamate synthetase and soluble protein, and finally promoted nitrogen metabolism. Under the low and middle nitrogen application conditions (62.5 kg·hm-2 and 125 kg·hm-2), plant nitrogen content of JNK728 and ZD909 increased by 17.6% and 30.3%, grain nitrogen content increased by 10.3% and 17.4%, nitrogen partial productivity, agronomic efficiency of applied nitrogen, recovery efficiency of applied nitrogen, nitrogen use efficiency increased by 10.0%, 15.7%, 23.3%, 24.8% and 5.7%, 15.0%, 49.9%, 71.7%, respectively. In conclusion, appropriate basic application of CN-CCC could enhance nitrogen metabolism, increase nitrogen use efficiency and grain yield of summer maize. Our results showed that CCC combined basic nitrogen application of 125 kg·hm-2 had the best effect.


Assuntos
Fertilizantes , Nitrogênio , Agricultura , China , Clormequat , Nitrogênio/análise , Solo , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA