Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Arch Biochem Biophys ; 754: 109958, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38499054

RESUMO

The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and zucapsaicin. Each exhibiting diverse binding behaviors and remarkably very low binding free energy. Experimental studies further illuminated their modulation of AhR signaling, and showing that they are consistently reducing AhR activity, except for luliconazole, which intriguingly enhances the AhR activity. This work demonstrates the possibility of using computational modelling as a quick screening tool to predict new AhR modulators from extensive drug libraries. Importantly, these findings hold immense therapeutic potential for addressing AhR-associated disorders. Consequently, it offers compelling prospects for innovative interventions through drug repurposing.


Assuntos
Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Sítios de Ligação , Ligação Proteica , Domínios Proteicos , Ligantes
2.
Arch Biochem Biophys ; 759: 110088, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992456

RESUMO

Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.


Assuntos
Imidazóis , Piperidinas , Piridazinas , Pirimidinas , Receptores de Hidrocarboneto Arílico , Humanos , Sítios de Ligação , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/antagonistas & inibidores , Imidazóis/farmacologia , Imidazóis/química , Ligantes , Simulação de Acoplamento Molecular , Piperidinas/farmacologia , Piperidinas/química , Ligação Proteica , Piridazinas/farmacologia , Piridazinas/química , Pirimidinas/farmacologia , Pirimidinas/química , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , /farmacologia
3.
J Chem Inf Model ; 64(6): 2021-2034, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38457778

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates biological signals to control various complicated cellular functions. It plays a crucial role in environmental sensing and xenobiotic metabolism. Dysregulation of AhR is associated with health concerns, including cancer and immune system disorders. Upon binding to AhR ligands, AhR, along with heat shock protein 90 and other partner proteins undergoes a transformation in the nucleus, heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT), and mediates numerous biological functions by inducing the transcription of various AhR-responsive genes. In this manuscript, the 3-dimensional structure of the entire human AhR is obtained using an artificial intelligence tool, and molecular dynamics (MD) simulations are performed to study different structural conformations. These conformations provide insights into the protein's function and movement in response to ligand binding. Understanding the dynamic behavior of AhR will contribute to the development of targeted therapies for associated health conditions. Therefore, we employ well-tempered metadynamics (WTE-metaD) simulations to explore the conformational landscape of AhR and obtain a better understanding of its functional behavior. Our computational results are in excellent agreement with previous experimental findings, revealing the closed and open states of helix α1 in the basic helix-loop-helix (bHLH domain) in the cytoplasm at the atomic level. We also predict the inactive form of AhR and identify Arginine 42 as a key residue that regulates switching between closed and open conformations in existing AhR modulators.


Assuntos
Inteligência Artificial , Receptores de Hidrocarboneto Arílico , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo
4.
Drug Dev Res ; 85(5): e22232, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992915

RESUMO

The human aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, plays a pivotal role in a diverse array of pathways in biological and pathophysiological events. This position AhR as a promising target for both carcinogenesis and antitumor strategies. In this study we utilized computational modeling to screen and identify FDA-approved drugs binding to the allosteric site between α2 of bHLH and PAS-A domains of AhR, with the aim of inhibiting its canonical pathway activity. Our findings indicated that nilotinib effectively fits into the allosteric pocket and forms interactions with crucial residues F82, Y76, and Y137. Binding free energy value of nilotinib is the lowest among top hits and maintains stable within its pocket throughout entire (MD) simulations time. Nilotinib has also substantial interactions with F295 and Q383 when it binds to orthosteric site and activate AhR. Surprisingly, it does not influence AhR nuclear translocation in the presence of AhR agonists; instead, it hinders the formation of the functional AhR-ARNT-DNA heterodimer assembly, preventing the upregulation of regulated enzymes like CYP1A1. Importantly, nilotinib exhibits a dual impact on AhR, modulating AhR activity via the PAS-B domain and working as a noncompetitive allosteric antagonist capable of blocking the canonical AhR signaling pathway in the presence of potent AhR agonists. These findings open a new avenue for the repositioning of nilotinib beyond its current application in diverse diseases mediated via AhR.


Assuntos
Sítio Alostérico , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/química , Humanos , Regulação Alostérica/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Simulação de Dinâmica Molecular , Aprovação de Drogas , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/antagonistas & inibidores
5.
Mol Cell Biochem ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436655

RESUMO

Cytochrome P450 1B1 (CYP1B1) has been widely associated with the development of cardiac pathologies due to its ability to produce cardiotoxic metabolites like midchain hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA) through an allylic oxidation reaction. 16-HETE is a subterminal HETE that is also produced by CYP-mediated AA metabolism. 19-HETE is another subterminal HETE that was found to inhibit CYP1B1 activity, lower midchain HETEs, and have cardioprotective effects. However, the effect of 16-HETE enantiomers on CYP1B1 has not yet been investigated. We hypothesized that 16(R/S)-HETE could alter the activity of CYP1B1 and other CYP enzymes. Therefore, this study was carried out to investigate the modulatory effect of 16-HETE enantiomers on CYP1B1 enzyme activity, and to examine the mechanisms by which they exert these modulatory effects. To investigate whether these effects are specific to CYP1B1, we also investigated 16-HETE modulatory effects on CYP1A2. Our results showed that 16-HETE enantiomers significantly increased CYP1B1 activity in RL-14 cells, recombinant human CYP1B1, and human liver microsomes, as seen by the significant increase in 7-ethoxyresorufin deethylation rate. On the contrary, 16-HETE enantiomers significantly inhibited CYP1A2 catalytic activity mediated by the recombinant human CYP1A2 and human liver microsomes. 16R-HETE showed stronger effects than 16S-HETE. The sigmoidal binding mode of the enzyme kinetics data demonstrated that CYP1B1 activation and CYP1A2 inhibition occurred through allosteric regulation. In conclusion, our study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 catalytic activity through an allosteric mechanism.

6.
J Appl Microbiol ; 130(3): 819-831, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32881183

RESUMO

AIMS: This study aimed to determine the toxin genotypes, virulence determinants and antibiogram of Clostridium perfringens isolated from poultry, animals and humans. Biofilm formation and the efficacy of disinfectants on C. perfringens biofilms were studied. METHODS AND RESULTS: Thirty C. perfringens isolates (20 clinical and 10 from chicken carcasses) were genotyped by PCR and all isolates were genotype A (cpa+). The overall prevalence of cpe, cpb2, netB and tpeL virulence genes was 6·7, 56·7, 56·7 and 36·7% respectively. Twenty-one isolates (70%) were multidrug-resistant, 8 (26·7%) were extensive drug-resistant and one isolate (3·3%) was pan drug-resistant. The average multiple antibiotic resistance index was 0·7. Biofilms were produced by 63·3% of C. perfringens isolates and categorized as weak (36·7%), moderate (16·7%) and strong (10%). Sodium hypochlorite caused significant reduction in C. perfringens biofilms (P < 0·0001). CONCLUSIONS: All C. perfringens strains in this study were type A, resistant to multiple antibiotics and most of them were biofilm producers. Sodium hypochlorite showed higher efficacy in reducing C. perfringens biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reported the efficacy of disinfectants in reducing C. perfringens biofilms of economic and public health concern and recommends application on surfaces in farms, food processing plants and slaughterhouses.


Assuntos
Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Biofilmes/efeitos dos fármacos , Clostridium perfringens/isolamento & purificação , Desinfetantes/farmacologia , Animais , Biofilmes/crescimento & desenvolvimento , Galinhas/microbiologia , Infecções por Clostridium/microbiologia , Clostridium perfringens/efeitos dos fármacos , Clostridium perfringens/genética , Clostridium perfringens/fisiologia , Farmacorresistência Bacteriana Múltipla , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Aves Domésticas/microbiologia , Virulência/genética
7.
Eur Radiol ; 29(3): 1444-1451, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30132105

RESUMO

BACKGROUND: With the implementation of transcatheter aortic valve replacement (TAVR) in lower-risk patients, evaluation of blood flow characteristics and the effect of TAVR on aortic dilatation becomes of considerable interest. We employed 4D flow MRI in the ascending aorta of patients after TAVR to assess wall shear stress (WSS) and compare blood flow patterns with surgical aortic valve replacement (SAVR) and age- and gender-matched controls. METHODS: Fourteen post-TAVR patients and ten age- and gender-matched controls underwent kt-PCA accelerated 4D flow MRI of the thoracic aorta at 3.0 Tesla. Velocity and wall shear stress was compared between the two groups. In addition, aortic flow eccentricity and displacement was assessed and compared between TAVR patients, controls and 14 SAVR patients recruited as part of an earlier study. RESULTS: Compared to controls, abnormally elevated WSS was present in 30±10% of the ascending aortic wall in TAVR patients. Increased WSS was present along the posterior mid-ascending aorta and the anterior distal-ascending aorta in all TAVR patients. TAVR results in eccentric and displaced flow in the mid- and distal-ascending aorta, whereas blood flow displacement in SAVR patients occurs only in the distal-ascending aorta. CONCLUSION: This study shows that TAVR results in increased blood flow velocity and WSS in the ascending aorta compared to age- and gender-matched elderly controls. This finding warrants longitudinal assessment of aortic dilatation after TAVR in the era of potential TAVR in lower-risk patients. Additionally, TAVR results in altered blood flow eccentricity and displacement in the mid- and distal-ascending aorta, whereas SAVR only results in altered blood flow eccentricity and displacement in the distal-ascending aorta. KEY POINTS: • TAVR results in increased blood flow velocity and WSS in the ascending aorta. • Longitudinal assessment of aortic dilatation after TAVR is warranted in the era of potential TAVR in lower-risk patients. • Both TAVR and SAVR result in altered blood flow patterns in the ascending aorta when compared to age-matched controls.


Assuntos
Aorta/fisiopatologia , Estenose da Valva Aórtica/cirurgia , Valva Aórtica/cirurgia , Velocidade do Fluxo Sanguíneo/fisiologia , Próteses Valvulares Cardíacas , Imageamento por Ressonância Magnética/métodos , Substituição da Valva Aórtica Transcateter/métodos , Idoso , Idoso de 80 Anos ou mais , Aorta/diagnóstico por imagem , Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/fisiopatologia , Feminino , Humanos , Masculino , Estresse Mecânico
8.
Epidemiol Infect ; 147: e84, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869000

RESUMO

Dromedary camels have been shown to be the main reservoir for human Middle East respiratory syndrome (MERS) infections. This systematic review aims to compile and analyse all published data on MERS-coronavirus (CoV) in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of infections in dromedary camels. We included original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field from 2013 to April 2018. In general, camels only show minor clinical signs of disease after being infected with MERS-CoV. Serological evidence of MERS-CoV in camels has been found in 20 countries, with molecular evidence for virus circulation in 13 countries. The seroprevalence of MERS-CoV antibodies increases with age in camels, while the prevalence of viral shedding as determined by MERS-CoV RNA detection in nasal swabs decreases. In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms as well as imported camels vs. locally bred camels. Some studies show a relatively higher seroprevalence and viral detection during the cooler winter months. Knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections.


Assuntos
Camelus , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Zoonoses , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Zoonoses/epidemiologia , Zoonoses/transmissão , Zoonoses/virologia
9.
J Viral Hepat ; 24 Suppl 2: 8-24, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29105285

RESUMO

Due to the introduction of newer, more efficacious treatment options, there is a pressing need for policy makers and public health officials to develop or adapt national hepatitis C virus (HCV) control strategies to the changing epidemiological landscape. To do so, detailed, country-specific data are needed to characterize the burden of chronic HCV infection. In this study of 17 countries, a literature review of published and unpublished data on HCV prevalence, viraemia, genotype, age and gender distribution, liver transplants and diagnosis and treatment rates was conducted, and inputs were validated by expert consensus in each country. Viraemic prevalence in this study ranged from 0.2% in Hong Kong to 2.4% in Taiwan, while the largest viraemic populations were in Nigeria (2 597 000 cases) and Taiwan (569 000 cases). Diagnosis, treatment and liver transplant rates varied widely across the countries included in this analysis, as did the availability of reliable data. Addressing data gaps will be critical for the development of future strategies to manage and minimize the disease burden of hepatitis C.


Assuntos
Gerenciamento Clínico , Saúde Global , Hepatite C Crônica/epidemiologia , Antivirais/uso terapêutico , Política de Saúde , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/mortalidade , Hepatite C Crônica/terapia , Humanos , Transplante de Fígado , Prevalência
10.
J Viral Hepat ; 24 Suppl 2: 44-63, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29105286

RESUMO

The hepatitis C virus (HCV) epidemic was forecasted through 2030 for 17 countries in Africa, Asia, Europe, Latin America and the Middle East, and interventions for achieving the Global Health Sector Strategy on viral hepatitis targets-"WHO Targets" (65% reduction in HCV-related deaths, 90% reduction in new infections and 90% of infections diagnosed by 2030) were considered. Scaling up treatment and diagnosis rates over time would be required to achieve these targets in all but one country, even with the introduction of high SVR therapies. The scenarios developed to achieve the WHO Targets in all countries studied assumed the implementation of national policies to prevent new infections and to diagnose current infections through screening.


Assuntos
Gerenciamento Clínico , Saúde Global , Hepatite C Crônica/epidemiologia , Hepatite C Crônica/mortalidade , Viremia/epidemiologia , Viremia/mortalidade , Antivirais/uso terapêutico , Política de Saúde , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/tratamento farmacológico , Humanos , Incidência , Prevalência , Viremia/diagnóstico , Viremia/tratamento farmacológico
11.
J Viral Hepat ; 24 Suppl 2: 25-43, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29105283

RESUMO

Factors influencing the morbidity and mortality associated with viremic hepatitis C virus (HCV) infection change over time and place, making it difficult to compare reported estimates. Models were developed for 17 countries (Bahrain, Bulgaria, Cameroon, Colombia, Croatia, Dominican Republic, Ethiopia, Ghana, Hong Kong, Jordan, Kazakhstan, Malaysia, Morocco, Nigeria, Qatar and Taiwan) to quantify and characterize the viremic population as well as forecast the changes in the infected population and the corresponding disease burden from 2015 to 2030. Model inputs were agreed upon through expert consensus, and a standardized methodology was followed to allow for comparison across countries. The viremic prevalence is expected to remain constant or decline in all but four countries (Ethiopia, Ghana, Jordan and Oman); however, HCV-related morbidity and mortality will increase in all countries except Qatar and Taiwan. In Qatar, the high-treatment rate will contribute to a reduction in total cases and HCV-related morbidity by 2030. In the remaining countries, however, the current treatment paradigm will be insufficient to achieve large reductions in HCV-related morbidity and mortality.


Assuntos
Saúde Global , Hepatite C Crônica/epidemiologia , Hepatite C Crônica/mortalidade , Modelos Estatísticos , Viremia/epidemiologia , Viremia/mortalidade , Antivirais/uso terapêutico , Política de Saúde , Hepatite C Crônica/tratamento farmacológico , Humanos , Incidência , Prevalência , Viremia/tratamento farmacológico
12.
Rev Sci Tech ; 35(3): 905-911, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28332641

RESUMO

The newly identified Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease, particularly in people with comorbidities, requires further investigation. Studies in Qatar and elsewhere have provided evidence that dromedary camels are a reservoir for the virus, but the exact modes of transmission of MERS-CoV to humans remain unclear. In February 2014, an assessment was made of the suitability and sensitivity of different types of sample for the detection of MERSCoV by real-time reverse-transcription polymerase chain reaction (RT-PCR) for three gene targets: UpE (upstream of the E gene), the N (nucleocapsid) gene and open reading frame (ORF) 1a. Fifty-three animals presented for slaughter were sampled. A high percentage of the sampled camels (79% [95% confidence interval 66.9-91.5%, standard error 0.0625]; 42 out of 53) were shown to be shedding MERS-CoV at the time of slaughter, yet all the animals were apparently healthy. Among the virus-positive animals, nasal swabs were most often positive (97.6%). Oral swabs were the second most frequently positive (35.7%), followed by rectal swabs (28.5%). In addition, the highest viral load, expressed as a cycle threshold (Ct) value of 11.27, was obtained from a nasal swab. These findings lead to the conclusion that nasal swabs are the candidate sample of choice for detecting MERS-CoV using RT-PCR technology in apparently healthy camels.


Des travaux de recherche approfondis sont encore nécessaires concernant le coronavirus responsable du syndrome respiratoire du Moyen-Orient (MERSCoV), un virus identifié récemment et qui provoque des troubles respiratoires sévères en particulier chez les individus atteints de pathologies multiples. Les études effectuées au Qatar et ailleurs ont démontré que les dromadaires font office de réservoirs du virus ; toutefois, les modalités précises de la transmission du MERS-CoV à l'être humain demeurent obscures. En février 2014, une équipe de chercheurs a évalué l'adéquation et la sensibilité de plusieurs types d'échantillons pour détecter le MERS-CoV en utilisant l'amplification en chaîne par polymérase couplée à une transcription inverse en temps réel (RT-PCR) spécifique pour trois cibles génétiques, à savoir la séquence UpE (en amont du gène E), le gène N (nucléocapside) et le cadre de lecture ORF1a. Pour ce faire, divers prélèvements ont été effectués sur 53 dromadaires destinés à l'abattage. Un fort pourcentage de ces dromadaires (79 % [intervalle de confiance à 95 % compris entre 66,9 et 91,5 %, erreur standard : 0,0625], soit 42 sur 53) excrétaient le MERSCoV au moment de l'abattage, mais aucun ne présentait le moindre signe clinique. Les échantillons dans lesquels le plus de cas positifs ont été détectés étaient les écouvillons nasaux (97,6 %). Venaient ensuite les écouvillons oraux, qui ont détecté 35,7 % de cas positifs, puis les écouvillons rectaux (28,5 % de cas positifs détectés). Par ailleurs, ce sont les écouvillons nasaux qui ont permis d'obtenir l'intensité la plus élevée de la réponse de la RT-PCR, exprimée en une valeur du seuil de cycles de 11,27. Ces résultats permettent de conclure que les écouvillons nasaux sont les échantillons à privilégier pour la détection du MERS-CoV par RTPCR chez les dromadaires asymptomatiques.


Es preciso investigar más a fondo el coronavirus del síndrome respiratorio de Oriente Medio (MERS-CoV), recién identificado, que provoca una grave enfermedad respiratoria, sobre todo en personas con afecciones concomitantes. Estudios realizados en Qatar y otros lugares han deparado pruebas de que los dromedarios son un reservorio del virus, pero aún no están del todo claros los modelos exactos de transmisión del MERS-CoV al ser humano. Los autores describen un análisis realizado en febrero de 2014 de la idoneidad y sensibilidad de distintos tipos de muestra para detectar el MERS-CoV mediante una reacción en cadena de la polimerasa acoplada a transcripción inversa en tiempo real (RTPCR) dirigida contra tres genes: el gen UpE (upstream of the E gene: en dirección 5' desde el gen E); el gen N (nucleocápside) y el marco de lectura abierto (ORF) 1a. Para ello se tomaron muestras de 53 animales enviados al sacrificio. Se comprobó que un elevado porcentaje de los dromedarios analizados (un 79% [intervalo de confianza al 95%: 66,9­91,5%; error estándar: 0,0625], esto es, 42 de 53) excretaban virus en el momento del sacrificio, pese a que todos los animales parecían estar sanos. Entre los ejemplares positivos para el MERS-CoV, las muestras que con más frecuencia arrojaban resultado positivo eran los frotis nasales (97,6%). Las segundas, por orden de frecuencia, eran los frotis bucales (35,7%), seguidos de los frotis rectales (28,5%). Además, la carga viral más alta, expresada por un valor de ciclo umbral (Ct) (o punto de cruce) de 11,27, se obtuvo a partir de un frotis nasal. Estos resultados llevan a la conclusión de que los frotis nasales son el tipo de muestra más adaptado para detectar el MERS-CoV en dromedarios aparentemente sanos mediante la técnica de RT-PCR.


Assuntos
Camelus , Infecções por Coronavirus/veterinária , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Fatores Etários , Animais , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Reservatórios de Doenças , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Boca/virologia , Mucosa Nasal/virologia , Roupa de Proteção , Catar/epidemiologia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reto/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Fatores de Risco , Carga Viral/veterinária , Eliminação de Partículas Virais
14.
Euro Surveill ; 19(23)2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24957745

RESUMO

Antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV) were detected in serum and milk collected according to local customs from 33 camels in Qatar, April 2014. At one location, evidence for active virus shedding in nasal secretions and/or faeces was observed for 7/12 camels; viral RNA was detected in milk of five of these seven camels. The presence of MERS-CoV RNA in milk of camels actively shedding the virus warrants measures to prevent putative food-borne transmission of MERS-CoV.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Camelus/sangue , Coronavirus/genética , Coronavirus/imunologia , Leite/virologia , RNA Viral/genética , Animais , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Características Culturais , Doenças Transmitidas por Alimentos/prevenção & controle , Catar , Reação em Cadeia da Polimerase em Tempo Real
15.
Front Mol Biosci ; 11: 1341727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193219

RESUMO

Cardiovascular diseases are a major global health concern, responsible for a significant number of deaths each year, often linked to cardiac arrhythmias resulting from dysfunction in ion channels. Hereditary Long QT Syndrome (LQTS) is a condition characterized by a prolonged QT interval on ECG, increasing the risk of sudden cardiac death. The most common type of LQTS, LQT2, is caused by mutations in the hERG gene, affecting a potassium ion channel. The majority of these mutations disrupt the channel's trafficking to the cell membrane, leading to intracellular retention. Specific high-affinity hERG blockers (e.g., E-4031) can rescue this mutant phenotype, but the exact mechanism is unknown. This study used accelerated molecular dynamics simulations to investigate how these mutations affect the hERG channel's structure, folding, endoplasmic reticulum (ER) retention, and trafficking. We reveal that these mutations induce structural changes in the channel, narrowing its central pore and altering the conformation of the intracellular domains. These changes expose internalization signals that contribute to ER retention and degradation of the mutant hERG channels. Moreover, the study found that the trafficking rescue drug E-4031 can inhibit these structural changes, potentially rescuing the mutant channels. This research offers valuable insights into the structural issues responsible for the degradation of rescuable transmembrane trafficking mutants. Understanding the defective trafficking structure of the hERG channel could help identify binding sites for small molecules capable of restoring proper folding and facilitating channel trafficking. This knowledge has the potential to lead to mechanism-based therapies that address the condition at the cellular level, which may prove more effective than treating clinical symptoms, ultimately offering hope for individuals with hereditary Long QT Syndrome.

16.
Chem Biol Interact ; 392: 110942, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458309

RESUMO

Drug metabolism is an essential process that chemically alters xenobiotic substrates to activate or terminate drug activity. Myeloperoxidase (MPO) is a neutrophil-derived haem-containing enzyme that is involved in killing invading pathogens, although consequentially, this same oxidative activity can produce metabolites that damage host tissue and play a role in various human pathologies. Cytochrome P450s (CYPs) are a superfamily of haem-containing enzymes that are significantly involved in the metabolism of drugs by functioning as monooxygenases and can be induced or inhibited, resulting in significant drug-drug interactions that lead to unanticipated adverse drug reactions. In this review, the functions of drug metabolism of MPO and CYPs are explored, along with their involvement and association for common enzymatic pathways by certain xenobiotics. MPO and CYPs metabolize numerous xenobiotics, although few reported studies have made a direct comparison between both enzymes. Additionally, we employed molecular docking to compare the active site and haem prosthetic group of MPO and CYPs, supporting their similar catalytic activities. Furthermore, we performed LCMS analysis and observed a shared hydroxylated mefenamic acid metabolite produced in both enzymatic systems. A proper understanding of the enzymology and mechanisms of action of MPO and CYPs is of significant importance when enhancing the beneficial functions of drugs in health and diminishing their damaging effects on diseases. Therefore, awareness of drugs and xenobiotic substrates involved in MPO and CYPs metabolism pathways will add to the knowledge base to foresee and prevent potential drug interactions and adverse events.


Assuntos
Neutrófilos , Xenobióticos , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/metabolismo , Simulação de Acoplamento Molecular , Neutrófilos/metabolismo , Estresse Oxidativo , Peroxidase/metabolismo , Xenobióticos/metabolismo
17.
J Mol Graph Model ; 118: 108339, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183684

RESUMO

Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that acts as a machinery that controls the expression of many genes, including cytochrome P450 CYP1A1, CYP1A2 and CYP1B1. It plays a principal role in numerous biological and toxicological functions, making it a promising target for developing therapeutic agents. Several novel small molecules targeting the AhR signaling pathway are currently under investigation as antitumor agents. Some have already advanced into clinical trials in patients with various tumors. Activation of AhR by diverse chemicals either endogenous or exogenous is initiated by the binding of these ligands to the PAS-B domain, which modulates AhR functions. There is, however, limited information about how various ligands interact with the PAS-B domain for activating or inhibiting the AhR. To better understand the mode of action of AhR agonists/antagonists. The current work proposes a combination of several computational tools to build dynamical models for the PAS-B domain bound to different ligands in mouse and human. Our findings reveal the essential roles of specific PAS-B residues (e.g., S365, V381& Q383), which mediate the AhR ligand-binding process. Our results also explain how these residues regulate the promiscuity of AhR in accommodating various chemicals in its binding PAS-B ligand-binding pocket.


Assuntos
Regulação da Expressão Gênica , Receptores de Hidrocarboneto Arílico , Humanos , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Ligação Proteica
18.
Polymers (Basel) ; 14(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080764

RESUMO

After more than 40 years of biopolymer development, the current research is still based on conventional laboratory techniques, which require a large number of experiments. Therefore, finding new research methods are required to accelerate and power the future of biopolymeric development. In this study, promising biopolymer-additive ranking was described using an integrated computer-aided molecular design platform. In this perspective, a set of 21 different additives with plant canola and soy proteins were initially examined by predicting the molecular interactions scores and mode of molecule interactions within the binding site using AutoDock Vina, Molecular Operating Environment (MOE), and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA). The findings of the investigated additives highlighted differences in their binding energy, binding sites, pockets, types, and distance of bonds formed that play crucial roles in protein-additive interactions. Therefore, the molecular docking approach can be used to rank the optimal additive among a set of candidates by predicting their binding affinities. Furthermore, specific molecular-level insights behind protein-additives interactions were provided to explain the ranking results. The highlighted results can provide a set of guidelines for the design of high-performance polymeric materials at the molecular level. As a result, we suggest that the implementation of molecular modeling can serve as a fast and straightforward tool in protein-based bioplastics design, where the correct ranking of additives among sets of candidates is often emphasized. Moreover, these approaches may open new ways for the discovery of new additives and serve as a starting point for more in-depth investigations into this area.

19.
Br J Anaesth ; 107(6): 844-58, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22065690

RESUMO

The rapid detection and evaluation of patients presenting with perioperative neurological dysfunction is of great clinical relevance. Biomarkers have been defined as biological molecules that can be used as an indicator of new onset or progression of a biological process or effect of treatment. Biomarkers have become increasingly important in this setting to supplement other modalities of diagnosis such as EEG, sensory- or motor-evoked potential, transcranial Doppler, near-infrared spectroscopy, or imaging methods. A number of neuro-proteins have been identified and are currently under investigation for potential to provide insights into injury severity, outcome, and the ability to monitor cellular damage and molecular events that occur during neurological injury. S100B is a protein released by glial cells and is considered a marker of blood-brain barrier dysfunction. Clinical studies in patients undergoing cardiac and non-cardiac surgery indicate that serum levels of S100B are increased intraoperatively and after operation. The neurone-specific enolase has also been extensively investigated as a potential marker of neuronal injury in the context of cardiac and non-cardiac surgery. A third biomarker of interest is the Tau protein, which has been linked to neurodegenerative disorders. Tau appears to be more specific than the previous two biomarkers since it is only found in the central nervous system. The metalloproteinase and ubiquitin C terminal hydroxylase-L1 (UCH-L1) are the most recently researched markers; however, their usefulness is still unclear. This review presents a comprehensive overview of S100B, neuronal-specific enolase, metalloproteinases, and UCH-L1 in the perioperative period.


Assuntos
Metaloproteases/análise , Fatores de Crescimento Neural/análise , Doenças do Sistema Nervoso/diagnóstico , Assistência Perioperatória , Fosfopiruvato Hidratase/análise , Proteínas S100/análise , Ubiquitina Tiolesterase/análise , Proteínas tau/análise , Biomarcadores/análise , Procedimentos Cirúrgicos Cardíacos , Ponte Cardiopulmonar , Endarterectomia das Carótidas , Humanos , Subunidade beta da Proteína Ligante de Cálcio S100
20.
J Mol Graph Model ; 102: 107776, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137694

RESUMO

Selective calcium channel antagonists are widely used in the treatment of cardiovascular disorders. They are mainly classified into 1,4-dihydropyridine (1,4-DHPs) and non-DHPs. The non-DHPs class is further classified into phenylalkylamines (PAAs) and benzothiazepines (BZTs) derivatives. These blockers are used for the treatment of hypertension, angina pectoris, and cardiac arrhythmias. Despite their well-established efficiency, the structural basis behind their activity is not very clear. Here we report the use of a near-open confirmation (NOC) model of the Cav1.2 cardiac ion channel to examine the mode of binding of these antagonists within the pore domain as well as the fenestration of the pore-forming domains. Effects of calcium ion permeation in the presence of drug molecules were assessed using steered molecular dynamics (SMD) simulations. These studies reveal that nicardipine, a DHP derivative, shows a strong Cav1.2 blocking activity, requiring more 2500 pN force to pull calcium ion towards the channel's pore in the presence of the compound. Similar blocking activity was observed for verapamil, a PAA derivative, requiring almost 2300 pN of force. The least blocking activity was observed for Diltiazem, a BZT derivative. Our results explain the structural basis and the binding details of 1,4-DHPs, PAAs and BZTs at their distinct Cav1.2 sites and offer detailed insights into their mechanism of action in modulating the Cav1.2 channel.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo L , Sítios de Ligação , Cálcio , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Humanos , Canais Iônicos , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA