Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nature ; 601(7894): 542-548, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082418

RESUMO

Obtaining a burning plasma is a critical step towards self-sustaining fusion energy1. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule2,3 through two different implosion concepts4-7. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics3,8. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.

2.
J Neurosci ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147589

RESUMO

The cerebellum plays an important role in diverse brain functions, ranging from motor learning to cognition. Recent studies have suggested that molecular and cellular heterogeneity within cerebellar lobules contributes to functional differences across the cerebellum. However, the specific relationship between molecular and cellular heterogeneity and diverse functional outputs of different regions of the cerebellum remains unclear. Here, we describe a previously unappreciated form of synaptic heterogeneity at parallel fiber synapses to Purkinje cells in the mouse cerebellum (both sexes). In contrast to uniform fast synaptic transmission, we found that the properties of slow synaptic transmission varied by up to three-fold across different lobules of the mouse cerebellum, resulting in surprising heterogeneity. Depending on the location of a Purkinje cell, the time of peak of slow synaptic currents varied by hundreds of milliseconds. The duration and decay-time of these currents also spanned hundreds of milliseconds, based on lobule. We found that, as a consequence of the heterogeneous synaptic dynamics, the same brief input stimulus was transformed into prolonged firing patterns over a range of timescales that depended on Purkinje cell location.Significance statement The cerebellum is separated into functionally distinguished lobules, yet the lobules have a repeated and similar pattern of connectivity. Thus, it remains unclear how cells and circuits manage to perform the diverse functions that the cerebellum supports. Our results demonstrate that cerebellar Purkinje cells have synapses with strikingly different properties across lobules. This synaptic diversity drives heterogeneously timed output responses to the same input. Our results lay the framework for elucidating heterogeneity in the intracellular signaling pathways of these synapses. Overall, we demonstrate a heterogeneity of synaptic timing properties that can serve to diversify information processing across functionally different regions of the cerebellum.

3.
J Neurosci ; 43(9): 1509-1529, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669885

RESUMO

Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in the CNS. To better understand how astrocytes acquire their unique features, we transplanted immature mouse cortical astrocytes into the developing cortex of male and female mice and assessed their integration, maturation, and survival. Within days, transplanted astrocytes developed morphologies and acquired territories and tiling behavior typical of cortical astrocytes. At 35-47 d post-transplantation, astrocytes appeared morphologically mature and expressed levels of EAAT2/GLT1 similar to nontransplanted astrocytes. Transplanted astrocytes also supported excitatory/inhibitory (E/I) presynaptic terminals within their territories, and displayed normal Ca2+ events. Transplanted astrocytes showed initially reduced expression of aquaporin 4 (AQP4) at endfeet and elevated expression of EAAT1/GLAST, with both proteins showing normalized expression by 110 d and one year post-transplantation, respectively. To understand how specific brain regions support astrocytic integration and maturation, we transplanted cortical astrocytes into the developing cerebellum. Cortical astrocytes interlaced with Bergmann glia (BG) in the cerebellar molecular layer to establish discrete territories. However, transplanted astrocytes retained many cortical astrocytic features including higher levels of EAAT2/GLT1, lower levels of EAAT1/GLAST, and the absence of expression of the AMPAR subunit GluA1. Collectively, our findings demonstrate that immature cortical astrocytes integrate, mature, and survive (more than one year) following transplantation and retain cortical astrocytic properties. Astrocytic transplantation can be useful for investigating cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms contributing to astrocytic development/diversity, and for determining the optimal timing for transplanting astrocytes for cellular delivery or replacement in regenerative medicine.SIGNIFICANCE STATEMENT The mechanisms that enable astrocytes to acquire diverse molecular and structural properties remain to be better understood. In this study, we systematically analyzed the properties of cortical astrocytes following their transplantation to the early postnatal brain. We found that immature cortical astrocytes transplanted into cerebral cortex during early postnatal mouse development integrate and establish normal astrocytic properties, and show long-term survival in vivo (more than one year). In contrast, transplanted cortical astrocytes display reduced or altered ability to integrate into the more mature cerebral cortex or developing cerebellum, respectively. This study demonstrates the developmental potential of transplanted cortical astrocytes and provides an approach to tease apart cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms that determine the structural, molecular, and physiological phenotype of astrocytes.


Assuntos
Astrócitos , Neuroglia , Camundongos , Masculino , Feminino , Animais , Astrócitos/metabolismo , Córtex Cerebral
4.
J Neurochem ; 167(1): 52-75, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37525469

RESUMO

Astrocytes have essential roles in central nervous system (CNS) health and disease. During development, immature astrocytes show complex interactions with neurons, endothelial cells, and other glial cell types. Our work and that of others have shown that these interactions are important for astrocytic maturation. However, whether and how these cells work together to control this process remains poorly understood. Here, we test the hypothesis that cooperative interactions of astrocytes with neurons and endothelial cells promote astrocytic maturation. Astrocytes were cultured alone, with neurons, endothelial cells, or a combination of both. This was followed by astrocyte sorting, RNA sequencing, and bioinformatic analysis to detect transcriptional changes. Across culture configurations, 7302 genes were differentially expressed by 4 or more fold and organized into 8 groups that demonstrate cooperative and antagonist effects of neurons and endothelia on astrocytes. We also discovered that neurons and endothelial cells caused splicing of 200 and 781 mRNAs, respectively. Changes in gene expression were validated using quantitative PCR, western blot (WB), and immunofluorescence analysis. We found that the transcriptomic data from the three-culture configurations correlated with protein expression of three representative targets (FAM107A, GAT3, and GLT1) in vivo. Alternative splicing results also correlated with cortical tissue isoform representation of a target (Fibronectin 1) at different developmental stages. By comparing our results to published transcriptomes of immature and mature astrocytes, we found that neurons or endothelia shift the astrocytic transcriptome toward a mature state and that the presence of both cell types has a greater effect on maturation than either cell alone. These results increase our understanding of cellular interactions/pathways that contribute to astrocytic maturation. They also provide insight into how alterations to neurons and/or endothelial cells may alter astrocytes with implications for astrocytic changes in CNS disorders and diseases.


Assuntos
Astrócitos , Transcriptoma , Astrócitos/metabolismo , Células Endoteliais/metabolismo , Neurônios/metabolismo , Neurogênese/fisiologia
6.
Hum Mol Genet ; 29(5): 785-802, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31943018

RESUMO

Down syndrome (DS), caused by the triplication of human chromosome 21, leads to significant alterations in brain development and is a major genetic cause of intellectual disability. While much is known about changes to neurons in DS, the effects of trisomy 21 on non-neuronal cells such as astrocytes are poorly understood. Astrocytes are critical for brain development and function, and their alteration may contribute to DS pathophysiology. To better understand the impact of trisomy 21 on astrocytes, we performed RNA-sequencing on astrocytes from newly produced DS human induced pluripotent stem cells (hiPSCs). While chromosome 21 genes were upregulated in DS astrocytes, we found consistent up- and down-regulation of genes across the genome with a strong dysregulation of neurodevelopmental, cell adhesion and extracellular matrix molecules. ATAC (assay for transposase-accessible chromatin)-seq also revealed a global alteration in chromatin state in DS astrocytes, showing modified chromatin accessibility at promoters of cell adhesion and extracellular matrix genes. Along with these transcriptomic and epigenomic changes, DS astrocytes displayed perturbations in cell size and cell spreading as well as modifications to cell-cell and cell-substrate recognition/adhesion, and increases in cellular motility and dynamics. Thus, triplication of chromosome 21 is associated with genome-wide transcriptional, epigenomic and functional alterations in astrocytes that may contribute to altered brain development and function in DS.


Assuntos
Astrócitos/patologia , Adesão Celular , Síndrome de Down/patologia , Regulação da Expressão Gênica , Genoma Humano , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Neurais/patologia , Astrócitos/metabolismo , Diferenciação Celular , Movimento Celular , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Transcriptoma
7.
J Neurosci ; 38(44): 9338-9345, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381425

RESUMO

Sonic Hedgehog (SHH) signaling has been most widely known for its role in specifying region and cell-type identity during embryonic morphogenesis. This mini-review accompanies a 2018 SFN mini-symposium that addresses an emerging body of research focused on understanding the diverse roles for Shh signaling in a wide range of contexts in neurodevelopment and, more recently, in the mature CNS. Such research shows that Shh affects the function of brain circuits, including the production and maintenance of diverse cell types and the establishment of wiring specificity. Here, we review these novel and unexpected functions and the unanswered questions regarding the role of SHH and its signaling pathway members in these cases.


Assuntos
Proteínas Hedgehog/fisiologia , Morfogênese/fisiologia , Células-Tronco Neurais/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Animais , Humanos , Células-Tronco Neurais/química , Sinapses/química
8.
Phys Rev Lett ; 121(9): 095002, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230893

RESUMO

We report on the first multilocation electron temperature (T_{e}) and flow measurements in an ignition hohlraum at the National Ignition Facility using the novel technique of mid-Z spectroscopic tracer "dots." The measurements define a low resolution "map" of hohlraum plasma conditions and provide a basis for the first multilocation tests of particle and energy transport physics in a laser-driven x-ray cavity. The data set is consistent with classical heat flow near the capsule but reduced heat flow near the laser entrance hole. We evaluate the role of kinetic effects, self-generated magnetic fields, and instabilities in causing spatially dependent heat transport in the hohlraum.

9.
Phys Rev E ; 110(1): L013201, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39161029

RESUMO

The predicted implosion performance of deuterium-tritium fuel capsules in indirect-drive inertial confinement fusion experiments relies on precise calculations of the x-ray drive in laser-heated cavities (hohlraums). This requires accurate, spectrally dependent simulations of laser to x-ray conversion efficiencies and x-ray absorption losses to the hohlraum wall. A set of National Ignition Facility experiments have identified a cause for the long-standing hohlraum "drive deficit" as the overprediction of gold emission at ∼2.5 keV in nonlocal thermodynamic equilibrium coronal plasma regions within the hohlraum. Reducing the emission and absorption opacity in this spectral region by ∼20% brings simulations into agreement with measured x-ray fluxes and spectra.

10.
Cell Rep ; 43(8): 114637, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39154337

RESUMO

Reactive changes of glial cells during neuroinflammation impact brain disorders and disease progression. Elucidating the mechanisms that control reactive gliosis may help us to understand brain pathophysiology and improve outcomes. Here, we report that adult ablation of autism spectrum disorder (ASD)-associated CHD8 in astrocytes attenuates reactive gliosis via remodeling chromatin accessibility, changing gene expression. Conditional Chd8 deletion in astrocytes, but not microglia, suppresses reactive gliosis by impeding astrocyte proliferation and morphological elaboration. Astrocyte Chd8 ablation alleviates lipopolysaccharide-induced neuroinflammation and septic-associated hypothermia in mice. Astrocytic CHD8 plays an important role in neuroinflammation by altering the chromatin landscape, regulating metabolic and lipid-associated pathways, and astrocyte-microglia crosstalk. Moreover, we show that reactive gliosis can be directly mitigated in vivo using an adeno-associated virus (AAV)-mediated Chd8 gene editing strategy. These findings uncover a role of ASD-associated CHD8 in the adult brain, which may warrant future exploration of targeting chromatin remodelers in reactive gliosis and neuroinflammation in injury and neurological diseases.


Assuntos
Astrócitos , Gliose , Animais , Gliose/patologia , Gliose/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Cromatina/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Montagem e Desmontagem da Cromatina , Microglia/metabolismo , Microglia/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos C57BL , Lipopolissacarídeos/farmacologia , Humanos , Camundongos Knockout , Masculino , Proliferação de Células
11.
Nat Commun ; 15(1): 2975, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582938

RESUMO

Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1. Analysis shows that including these three corrections alone accounts for the measured fusion performance variability in the two highest performing experimental campaigns on the NIF to within error. Here we quantify the performance sensitivity to mode-2 symmetry in the burning plasma regime and apply the results, in the form of an empirical correction to a 1D performance model. Furthermore, we find the sensitivity to mode-2 determined through a series of integrated 2D radiation hydrodynamic simulations to be consistent with the experimentally determined sensitivity only when including alpha-heating.

12.
J Neurosci ; 31(24): 8905-19, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21677174

RESUMO

Astrocytes show a complex structural and physiological interplay with neurons and respond to neuronal activation in vitro and in vivo with intracellular calcium elevations. These calcium changes enable astrocytes to modulate synaptic transmission and plasticity through various mechanisms. However, the response pattern of astrocytes to single neuronal depolarization events still remains unresolved. This information is critical for fully understanding the coordinated network of neuron-glial signaling in the brain. To address this, we developed a system to map astrocyte calcium responses along apical dendrites of CA1 pyramidal neurons in hippocampal slices using single-neuron stimulation with channelrhodopsin-2. This technique allowed selective neuronal depolarization without invasive manipulations known to alter calcium levels in astrocytes. Light-evoked neuronal depolarization was elicited and calcium events in surrounding astrocytes were monitored using the calcium-sensitive dye Calcium Orange. Stimulation of single neurons caused calcium responses in populations of astrocytes along the apical axis of CA1 cell dendrites. Calcium responses included single events that were synchronized with neuronal stimulation and poststimulus changes in calcium event frequency, both of which were modulated by glutamatergic and purinergic signaling. Individual astrocytes near CA1 cells showed low ability to respond to repeated neuronal depolarization events. However, the response of the surrounding astrocyte population was remarkably accurate. Interestingly, the reliability of responses was graded with respect to astrocyte location along the CA1 cell dendrite, with astrocytes residing in the primary dendrite subregion being most responsive. This study provides a new perspective on the dynamic response property of astrocyte ensembles to neuronal activity.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Hipocampo/citologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Proteínas de Bactérias/genética , Benzoatos/farmacologia , Benzoxazinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Carbenoxolona/farmacologia , Channelrhodopsins , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Proteínas Luminescentes/genética , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Morfolinas/farmacologia , Naftalenos/farmacologia , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/farmacologia , Fosfopiruvato Hidratase/metabolismo , Estimulação Luminosa/métodos , Piperidinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Estatísticas não Paramétricas , Toxina Tetânica/farmacologia , Tetrodotoxina/farmacologia , Transdução Genética/métodos
13.
Mol Cell Neurosci ; 46(1): 347-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21118670

RESUMO

Dopaminergic neurons from the ventral mesencephalon/diencephalon (mesodiencephalon) form vital pathways constituting the majority of the brain's dopamine systems. Mesodiencephalic dopaminergic (mdDA) neurons extend longitudinal projections anteriorly through the diencephalon, ascending toward forebrain targets. The mechanisms by which mdDA axons initially navigate through the diencephalon are poorly understood. Recently the Slit family of secreted axon guidance proteins, and their Robo receptors, have been identified as important guides for descending longitudinal axons. To test the potential roles of Slit/Robo guidance in ascending trajectories, we examined tyrosine hydroxylase-positive (TH+) projections from mdDA neurons in mutant mouse embryos. We found that mdDA axons grow out of and parallel to Slit-positive ventral regions within the diencephalon, and that subsets of the mdDA axons likely express Robo1 and possibly also Robo2. Slit2 was able to directly inhibit TH axon outgrowth in explant co-culture assays. The mdDA axons made significant pathfinding errors in Slit1/2 and Robo1/2 knockout mice, including spreading out in the diencephalon to form a wider tract. The wider tract resulted from a combination of invasion of the ventral midline, consistent with Slit repulsion, but also axons wandering dorsally, away from the ventral midline. Aberrant dorsal trajectories were prominent in Robo1 and Robo1/2 knockout mice, suggesting that an aspect of Robo receptor function is Slit-independent. These results indicate that Slit/Robo signaling is critical during the initial establishment of dopaminergic pathways, with roles in the dorsoventral positioning and precise pathfinding of these ascending longitudinal axons.


Assuntos
Axônios/fisiologia , Diencéfalo/anatomia & histologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesencéfalo/anatomia & histologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Animais , Movimento Celular/fisiologia , Dopamina/metabolismo , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/fisiologia , Receptores Imunológicos/genética , Transdução de Sinais/fisiologia , Proteínas Roundabout
14.
Reprod Fertil Dev ; 22(1): 75-87, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20003848

RESUMO

Development of the post-hatching conceptus in ruminants involves a period of morphological expansion that is driven by complex interactions between the conceptus and its intrauterine environment. As a result of these interactions, endometrial physiology is altered, leading to establishment of the pregnancy and continued development of the placenta. Disruption of normal fetal and placental development can occur when embryos are exposed to manipulations in vitro or when inappropriate endocrine sequencing occurs in vivo during the pre- and peri-implantation periods. The present review addresses the development of the post-hatching bovine conceptus, its interactions with the maternal system and changes in development that can occur as a result of in vivo and in vitro manipulations of the bovine embryo.


Assuntos
Bovinos/fisiologia , Anormalidades Congênitas/veterinária , Prenhez/fisiologia , Animais , Anormalidades Congênitas/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/fisiologia , Gravidez , Prenhez/genética , RNA Antissenso/genética , RNA Antissenso/fisiologia , Receptores de Somatomedina/genética , Receptores de Somatomedina/fisiologia , Síndrome , Útero/fisiologia
15.
Front Cell Neurosci ; 14: 36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161521

RESUMO

γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mature brain but has the paradoxical property of depolarizing neurons during early development. Depolarization provided by GABAA transmission during this early phase regulates neural stem cell proliferation, neural migration, neurite outgrowth, synapse formation, and circuit refinement, making GABA a key factor in neural circuit development. Importantly, depending on the context, depolarizing GABAA transmission can either drive neural activity or inhibit it through shunting inhibition. The varying roles of depolarizing GABAA transmission during development, and its ability to both drive and inhibit neural activity, makes it a difficult developmental cue to study. This is particularly true in the later stages of development when the majority of synapses form and GABAA transmission switches from depolarizing to hyperpolarizing. Here, we addressed the importance of depolarizing but inhibitory (or shunting) GABAA transmission in glutamatergic synapse formation in hippocampal CA1 pyramidal neurons. We first showed that the developmental depolarizing-to-hyperpolarizing switch in GABAA transmission is recapitulated in organotypic hippocampal slice cultures. Based on the expression profile of K+-Cl- co-transporter 2 (KCC2) and changes in the GABA reversal potential, we pinpointed the timing of the switch from depolarizing to hyperpolarizing GABAA transmission in CA1 neurons. We found that blocking depolarizing but shunting GABAA transmission increased excitatory synapse number and strength, indicating that depolarizing GABAA transmission can restrain glutamatergic synapse formation. The increase in glutamatergic synapses was activity-dependent but independent of BDNF signaling. Importantly, the elevated number of synapses was stable for more than a week after GABAA inhibitors were washed out. Together these findings point to the ability of immature GABAergic transmission to restrain glutamatergic synapse formation and suggest an unexpected role for depolarizing GABAA transmission in shaping excitatory connectivity during neural circuit development.

16.
Nat Genet ; 51(12): 1702-1713, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768071

RESUMO

Childhood brain tumors have suspected prenatal origins. To identify vulnerable developmental states, we generated a single-cell transcriptome atlas of >65,000 cells from embryonal pons and forebrain, two major tumor locations. We derived signatures for 191 distinct cell populations and defined the regional cellular diversity and differentiation dynamics. Projection of bulk tumor transcriptomes onto this dataset shows that WNT medulloblastomas match the rhombic lip-derived mossy fiber neuronal lineage and embryonal tumors with multilayered rosettes fully recapitulate a neuronal lineage, while group 2a/b atypical teratoid/rhabdoid tumors may originate outside the neuroectoderm. Importantly, single-cell tumor profiles reveal highly defined cell hierarchies that mirror transcriptional programs of the corresponding normal lineages. Our findings identify impaired differentiation of specific neural progenitors as a common mechanism underlying these pediatric cancers and provide a rational framework for future modeling and therapeutic interventions.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Humanos , Lactente , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Fibras Nervosas/patologia , Fibras Nervosas/fisiologia , Prosencéfalo/citologia , Prosencéfalo/embriologia , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Análise de Célula Única
17.
Toxicol Lett ; 291: 194-199, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29501854

RESUMO

Triclosan (TCS) is an antibacterial widely used in personal care products that exhibits endocrine disrupting activity in several species, with reports of altered thyroid, estrogen and androgen signaling pathways. To evaluate the androgenic mode of action, TCS was evaluated for androgen receptor mediated effects in the Hershberger assay and for altered androgen synthesis in the H295R steroidogenesis assay. In the Hershberger assay, castrated males were dosed by oral gavage for 10 days with corn oil (vehicle) or TCS (50 or 200 mg/kg/day) in the presence or absence of testosterone proprionate (TP, 0.2 mg/kg/day) prior to assessing accessory sex tissues (ASTs) weights. TCS alone or in combination with TP did not alter androgen dependent AST weights. Assessment of serum thyroxine (T4) demonstrated a significant dose-dependent decrease by TCS (50 or 200 mg/kg/day) co-administered with TP and TCS (200 mg/kg) without TP, but no differences in liver or thyroid weights. In the H295R assay, TCS from 0.01 to 10 µM had no effect on testosterone production but TCS at 3 µM and above did induce a significant increase in estrogen production. At 10 µM, TCS produced significant cytotoxicity which confounded the interpretation of the estrogenic effect at that concentration. Thus, TCS had no effect on androgen synthesis or activity in the models used, but did enhance estrogen production and suppress serum T4.


Assuntos
Anti-Infecciosos Locais/farmacologia , Disruptores Endócrinos/farmacologia , Esteroides/biossíntese , Triclosan/farmacologia , Androgênios/biossíntese , Animais , Aromatase/metabolismo , Castração , Linhagem Celular , Genitália Masculina/efeitos dos fármacos , Genitália Masculina/metabolismo , Humanos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Androgênicos/efeitos dos fármacos , Propionato de Testosterona/farmacologia
18.
Gene Expr Patterns ; 7(8): 837-45, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17826360

RESUMO

Robo1 is a member of the Roundabout (Robo) family of receptors for the Slit axon guidance cues. In mice (and humans), the Robo1 locus has alternative promoters producing two transcript isoforms, Robo1 and Dutt1. These isoforms have unique 5' termini, predicted to encode distinct N-terminal amino acids, but share the rest of their 3' exons. To determine the spatial expression of the Robo1 and Dutt1 isoforms, we generated isoform-specific RNA probes, and carried out in situ hybridization on E10.5 mouse embryos, the stage in early neuron differentiation when many major axon pathways are established. The two isoforms had distinct expression patterns that partially overlapped. Dutt1 was the predominant isoform, with widespread expression in regions of post-mitotic neurons and neuroepithelial cells. The Robo1 isoform had a distinct expression pattern restricted to subsets of neurons, many of which were Dutt1-negative. Dutt1 was the main isoform expressed in spinal cord commissural neurons. For both probes, the main hybridization signal was limited to two spots in the nuclei of individual cells. This study shows distinct expression patterns for the Dutt1 and Robo1 alternative promoters in the embryonic nervous system.


Assuntos
Encéfalo/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Medula Espinal/embriologia , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Feminino , Hibridização In Situ , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Neurônios/química , Neurônios/metabolismo , Regiões Promotoras Genéticas , RNA Complementar/química , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Proteínas Roundabout
19.
Nat Biotechnol ; 18(5): 533-7, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10802621

RESUMO

Metabolic engineering has achieved encouraging success in producing foreign metabolites in a variety of hosts. However, common strategies for engineering metabolic pathways focus on amplifying the desired enzymes and deregulating cellular controls. As a result, uncontrolled or deregulated metabolic pathways lead to metabolic imbalance and suboptimal productivity. Here we have demonstrated the second stage of metabolic engineering effort by designing and engineering a regulatory circuit to control gene expression in response to intracellular metabolic states. Specifically, we recruited and altered one of the global regulatory systems in Escherichia coli, the Ntr regulon, to control the engineered lycopene biosynthesis pathway. The artificially engineered regulon, stimulated by excess glycolytic flux through sensing of an intracellular metabolite, acetyl phosphate, controls the expression of two key enzymes in lycopene synthesis in response to flux dynamics. This intracellular control loop significantly enhanced lycopene production while reducing the negative impact caused by metabolic imbalance. Although we demonstrated this strategy for metabolite production, it can be extended into other fields where gene expression must be closely controlled by intracellular physiology, such as gene therapy.


Assuntos
Proteínas de Bactérias , Carotenoides/biossíntese , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Engenharia Genética/métodos , Transativadores , Fatores de Transcrição , 3-Desoxi-7-Fosfo-Heptulonato Sintase/biossíntese , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Anticarcinógenos/metabolismo , Antioxidantes/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/biossíntese , Isomerases de Ligação Dupla Carbono-Carbono/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/metabolismo , Retroalimentação , Dosagem de Genes , Glicólise , Hemiterpenos , Licopeno , Metabolismo/genética , Nitrogênio/deficiência , Organofosfatos/metabolismo , Proteínas PII Reguladoras de Nitrogênio , Fosfoproteínas Fosfatases/genética , Fosfotransferases (Aceptores Pareados)/biossíntese , Fosfotransferases (Aceptores Pareados)/genética , Proteínas Quinases/genética , Regulon
20.
Front Cell Neurosci ; 11: 300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021743

RESUMO

Astrocytes play essential roles in nearly all aspects of brain function from modulating synapses and neurovasculature to preserving appropriate extracellular solute concentrations. To meet the complex needs of the central nervous system (CNS), astrocytes possess highly specialized properties that are optimized for their surrounding neural circuitry. Precisely how these diverse astrocytes types are generated in vivo, however, remains poorly understood. Key to this process is a critical balance of intrinsic developmental patterning and context-dependent environmental signaling events that configures astrocyte phenotype. Indeed, emerging lines of evidence indicate that persistent cues from neighboring cells in the mature CNS cooperate with early patterning events to promote astrocyte diversity. Consistent with this, manipulating Sonic hedgehog (Shh), Notch and fibroblast growth factor (FGF) signaling in the adult brain, have profound effects on the structural, morphological and physiological state of mature astrocytes. These pathways may become disrupted in various neurological diseases and contribute to CNS pathology. This mini-review article focuses on how context-dependent environmental cues cooperate with intrinsic developmental patterning events to control astrocyte diversity in vivo in order to promote healthy brain function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA