Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Brief Bioinform ; 13(1): 107-21, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21525143

RESUMO

Recent advances in massively parallel sequencing technology have created new opportunities to probe the hidden world of microbes. Taxonomy-independent clustering of the 16S rRNA gene is usually the first step in analyzing microbial communities. Dozens of algorithms have been developed in the last decade, but a comprehensive benchmark study is lacking. Here, we survey algorithms currently used by microbiologists, and compare seven representative methods in a large-scale benchmark study that addresses several issues of concern. A new experimental protocol was developed that allows different algorithms to be compared using the same platform, and several criteria were introduced to facilitate a quantitative evaluation of the clustering performance of each algorithm. We found that existing methods vary widely in their outputs, and that inappropriate use of distance levels for taxonomic assignments likely resulted in substantial overestimates of biodiversity in many studies. The benchmark study identified our recently developed ESPRIT-Tree, a fast implementation of the average linkage-based hierarchical clustering algorithm, as one of the best algorithms available in terms of computational efficiency and clustering accuracy.


Assuntos
Algoritmos , Biota , Biologia Computacional/métodos , Análise por Conglomerados , Genoma Bacteriano , RNA Ribossômico 16S/genética , Alinhamento de Sequência
2.
Proc Natl Acad Sci U S A ; 108(14): 5679-84, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21282665

RESUMO

Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.


Assuntos
Formigas/genética , Evolução Molecular , Genoma de Inseto/genética , Genômica/métodos , Filogenia , Animais , Sequência de Bases , Biologia Computacional , Metilação de DNA , Etiquetas de Sequências Expressas , Hierarquia Social , Masculino , Dados de Sequência Molecular , Receptores Odorantes/genética , Análise de Sequência de DNA , Vitelogeninas/genética
3.
BMC Dev Biol ; 12: 33, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23126590

RESUMO

BACKGROUND: The first distinct differentiation event in mammals occurs at the blastocyst stage when totipotent blastomeres differentiate into either pluripotent inner cell mass (ICM) or multipotent trophectoderm (TE). Here we determined, for the first time, global gene expression patterns in the ICM and TE isolated from bovine blastocysts. The ICM and TE were isolated from blastocysts harvested at day 8 after insemination by magnetic activated cell sorting, and cDNA sequenced using the SOLiD 4.0 system. RESULTS: A total of 870 genes were differentially expressed between ICM and TE. Several genes characteristic of ICM (for example, NANOG, SOX2, and STAT3) and TE (ELF5, GATA3, and KRT18) in mouse and human showed similar patterns in bovine. Other genes, however, showed differences in expression between ICM and TE that deviates from the expected based on mouse and human. CONCLUSION: Analysis of gene expression indicated that differentiation of blastomeres of the morula-stage embryo into the ICM and TE of the blastocyst is accompanied by differences between the two cell lineages in expression of genes controlling metabolic processes, endocytosis, hatching from the zona pellucida, paracrine and endocrine signaling with the mother, and genes supporting the changes in cellular architecture, stemness, and hematopoiesis necessary for development of the trophoblast.


Assuntos
Massa Celular Interna do Blastocisto/metabolismo , Ectoderma/metabolismo , Transcriptoma , Trofoblastos/metabolismo , Animais , Bovinos , Análise por Conglomerados , Ilhas de CpG , Ectoderma/citologia , Técnicas de Cultura Embrionária , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Redes e Vias Metabólicas , Camundongos , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Regulação para Cima
4.
Retrovirology ; 9: 108, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23244298

RESUMO

BACKGROUND: Deep sequencing provides the basis for analysis of biodiversity of taxonomically similar organisms in an environment. While extensively applied to microbiome studies, population genetics studies of viruses are limited. To define the scope of HIV-1 population biodiversity within infected individuals, a suite of phylogenetic and population genetic algorithms was applied to HIV-1 envelope hypervariable domain 3 (Env V3) within peripheral blood mononuclear cells from a group of perinatally HIV-1 subtype B infected, therapy-naïve children. RESULTS: Biodiversity of HIV-1 Env V3 quasispecies ranged from about 70 to 270 unique sequence clusters across individuals. Viral population structure was organized into a limited number of clusters that included the dominant variants combined with multiple clusters of low frequency variants. Next generation viral quasispecies evolved from low frequency variants at earlier time points through multiple non-synonymous changes in lineages within the evolutionary landscape. Minor V3 variants detected as long as four years after infection co-localized in phylogenetic reconstructions with early transmitting viruses or with subsequent plasma virus circulating two years later. CONCLUSIONS: Deep sequencing defines HIV-1 population complexity and structure, reveals the ebb and flow of dominant and rare viral variants in the host ecosystem, and identifies an evolutionary record of low-frequency cell-associated viral V3 variants that persist for years. Bioinformatics pipeline developed for HIV-1 can be applied for biodiversity studies of virome populations in human, animal, or plant ecosystems.


Assuntos
Variação Genética , HIV-1/genética , Análise por Conglomerados , Evolução Molecular , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucócitos Mononucleares/virologia
5.
Nucleic Acids Res ; 38(22): e205, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20929878

RESUMO

With the aid of next-generation sequencing technology, researchers can now obtain millions of microbial signature sequences for diverse applications ranging from human epidemiological studies to global ocean surveys. The development of advanced computational strategies to maximally extract pertinent information from massive nucleotide data has become a major focus of the bioinformatics community. Here, we describe a novel analytical strategy including discriminant and topology analyses that enables researchers to deeply investigate the hidden world of microbial communities, far beyond basic microbial diversity estimation. We demonstrate the utility of our approach through a computational study performed on a previously published massive human gut 16S rRNA data set. The application of discriminant and topology analyses enabled us to derive quantitative disease-associated microbial signatures and describe microbial community structure in far more detail than previously achievable. Our approach provides rigorous statistical tools for sequence-based studies aimed at elucidating associations between known or unknown organisms and a variety of physiological or environmental conditions.


Assuntos
Algoritmos , Metagenoma , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biologia Computacional/métodos , Análise Discriminante , Trato Gastrointestinal/microbiologia , Humanos , Obesidade/microbiologia , Filogenia
6.
Nucleic Acids Res ; 37(10): e76, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19417062

RESUMO

Recent metagenomics studies of environmental samples suggested that microbial communities are much more diverse than previously reported, and deep sequencing will significantly increase the estimate of total species diversity. Massively parallel pyrosequencing technology enables ultra-deep sequencing of complex microbial populations rapidly and inexpensively. However, computational methods for analyzing large collections of 16S ribosomal sequences are limited. We proposed a new algorithm, referred to as ESPRIT, which addresses several computational issues with prior methods. We developed two versions of ESPRIT, one for personal computers (PCs) and one for computer clusters (CCs). The PC version is used for small- and medium-scale data sets and can process several tens of thousands of sequences within a few minutes, while the CC version is for large-scale problems and is able to analyze several hundreds of thousands of reads within one day. Large-scale experiments are presented that clearly demonstrate the effectiveness of the newly proposed algorithm. The source code and user guide are freely available at http://www.biotech.ufl.edu/people/sun/esprit.html.


Assuntos
Algoritmos , Biodiversidade , Microbiologia Ambiental , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Ar , Genes de RNAr , Água do Mar/microbiologia , Alinhamento de Sequência
7.
PLoS One ; 16(7): e0253267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228724

RESUMO

We report a new subgroup of Type III Restriction-Modification systems that use m4C methylation for host protection. Recognition specificities for six such systems, each recognizing a novel motif, have been determined using single molecule real-time DNA sequencing. In contrast to all previously characterized Type III systems which modify adenine to m6A, protective methylation of the host genome in these new systems is achieved by the N4-methylation of a cytosine base in one strand of an asymmetric 4 to 6 base pair recognition motif. Type III systems are heterotrimeric enzyme complexes containing a single copy of an ATP-dependent restriction endonuclease-helicase (Res) and a dimeric DNA methyltransferase (Mod). The Type III Mods are beta-class amino-methyltransferases, examples of which form either N6-methyl adenine or N4-methyl cytosine in Type II RM systems. The Type III m4C Mod and Res proteins are diverged, suggesting ancient origin or that m4C modification has arisen from m6A MTases multiple times in diverged lineages. Two of the systems, from thermophilic organisms, required expression of both Mod and Res to efficiently methylate an E. coli host, unlike previous findings that Mod alone is proficient at modification, suggesting that the division of labor between protective methylation and restriction activities is atypical in these systems. Two of the characterized systems, and many homologous putative systems, appear to include a third protein; a conserved putative helicase/ATPase subunit of unknown function and located 5' of the mod gene. The function of this additional ATPase is not yet known, but close homologs co-localize with the typical Mod and Res genes in hundreds of putative Type III systems. Our findings demonstrate a rich diversity within Type III RM systems.


Assuntos
Citosina , Metilação de DNA , Enzimas de Restrição-Modificação do DNA/genética , DNA/metabolismo , Citosina/metabolismo , Metilases de Modificação do DNA/química , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cromatografia Gasosa-Espectrometria de Massas , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Nat Biotechnol ; 39(9): 1129-1140, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504351

RESUMO

Assessing the reproducibility, accuracy and utility of massively parallel DNA sequencing platforms remains an ongoing challenge. Here the Association of Biomolecular Resource Facilities (ABRF) Next-Generation Sequencing Study benchmarks the performance of a set of sequencing instruments (HiSeq/NovaSeq/paired-end 2 × 250-bp chemistry, Ion S5/Proton, PacBio circular consensus sequencing (CCS), Oxford Nanopore Technologies PromethION/MinION, BGISEQ-500/MGISEQ-2000 and GS111) on human and bacterial reference DNA samples. Among short-read instruments, HiSeq 4000 and X10 provided the most consistent, highest genome coverage, while BGI/MGISEQ provided the lowest sequencing error rates. The long-read instrument PacBio CCS had the highest reference-based mapping rate and lowest non-mapping rate. The two long-read platforms PacBio CCS and PromethION/MinION showed the best sequence mapping in repeat-rich areas and across homopolymers. NovaSeq 6000 using 2 × 250-bp read chemistry was the most robust instrument for capturing known insertion/deletion events. This study serves as a benchmark for current genomics technologies, as well as a resource to inform experimental design and next-generation sequencing variant calling.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Pareamento Incorreto de Bases , Benchmarking , DNA/genética , DNA Bacteriano/genética , Genoma Bacteriano , Genoma Humano , Humanos
9.
BMC Genomics ; 9: 312, 2008 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-18590545

RESUMO

BACKGROUND: Benefits from high-throughput sequencing using 454 pyrosequencing technology may be most apparent for species with high societal or economic value but few genomic resources. Rapid means of gene sequence and SNP discovery using this novel sequencing technology provide a set of baseline tools for genome-level research. However, it is questionable how effective the sequencing of large numbers of short reads for species with essentially no prior gene sequence information will support contig assemblies and sequence annotation. RESULTS: With the purpose of generating the first broad survey of gene sequences in Eucalyptus grandis, the most widely planted hardwood tree species, we used 454 technology to sequence and assemble 148 Mbp of expressed sequences (EST). EST sequences were generated from a normalized cDNA pool comprised of multiple tissues and genotypes, promoting discovery of homologues to almost half of Arabidopsis genes, and a comprehensive survey of allelic variation in the transcriptome. By aligning the sequencing reads from multiple genotypes we detected 23,742 SNPs, 83% of which were validated in a sample. Genome-wide nucleotide diversity was estimated for 2,392 contigs using a modified theta (theta) parameter, adapted for measuring genetic diversity from polymorphisms detected by randomly sequencing a multi-genotype cDNA pool. Diversity estimates in non-synonymous nucleotides were on average 4x smaller than in synonymous, suggesting purifying selection. Non-synonymous to synonymous substitutions (Ka/Ks) among 2,001 contigs averaged 0.30 and was skewed to the right, further supporting that most genes are under purifying selection. Comparison of these estimates among contigs identified major functional classes of genes under purifying and diversifying selection in agreement with previous researches. CONCLUSION: In providing an abundance of foundational transcript sequences where limited prior genomic information existed, this work created part of the foundation for the annotation of the E. grandis genome that is being sequenced by the US Department of Energy. In addition we demonstrated that SNPs sampled in large-scale with 454 pyrosequencing can be used to detect evolutionary signatures among genes, providing one of the first genome-wide assessments of nucleotide diversity and Ka/Ks for a non-model plant species.


Assuntos
Eucalyptus/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Alelos , DNA Complementar/biossíntese , Biblioteca Gênica , Variação Genética , Haplótipos , Reprodutibilidade dos Testes , Software , Transcrição Gênica
10.
Bioinformatics ; 23(1): 30-7, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17130137

RESUMO

MOTIVATION: Accurate prognosis of breast cancer can spare a significant number of breast cancer patients from receiving unnecessary adjuvant systemic treatment and its related expensive medical costs. Recent studies have demonstrated the potential value of gene expression signatures in assessing the risk of post-surgical disease recurrence. However, these studies all attempt to develop genetic marker-based prognostic systems to replace the existing clinical criteria, while ignoring the rich information contained in established clinical markers. Given the complexity of breast cancer prognosis, a more practical strategy would be to utilize both clinical and genetic marker information that may be complementary. METHODS: A computational study is performed on publicly available microarray data, which has spawned a 70-gene prognostic signature. The recently proposed I-RELIEF algorithm is used to identify a hybrid signature through the combination of both genetic and clinical markers. A rigorous experimental protocol is used to estimate the prognostic performance of the hybrid signature and other prognostic approaches. Survival data analyses is performed to compare different prognostic approaches. RESULTS: The hybrid signature performs significantly better than other methods, including the 70-gene signature, clinical makers alone and the St. Gallen consensus criterion. At the 90% sensitivity level, the hybrid signature achieves 67% specificity, as compared to 47% for the 70-gene signature and 48% for the clinical makers. The odds ratio of the hybrid signature for developing distant metastases within five years between the patients with a good prognosis signature and the patients with a bad prognosis is 21.0 (95% CI:6.5-68.3), far higher than either genetic or clinical markers alone. AVAILABILITY: The breast cancer dataset is available at www.nature.com and Matlab codes are available upon request.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/classificação , Neoplasias da Mama/diagnóstico , Marcadores Genéticos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Biologia Computacional , Feminino , Humanos , Metástase Neoplásica/diagnóstico , Recidiva Local de Neoplasia/classificação , Recidiva Local de Neoplasia/diagnóstico , Razão de Chances , Valor Preditivo dos Testes , Prognóstico , Curva ROC , Sensibilidade e Especificidade
11.
J Fish Biol ; 72(9): 2354-2376, 2008 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-19936325

RESUMO

A novel custom microarray for largemouth bass (Micropterus salmoides) was designed with sequences obtained from a normalized cDNA library using the 454 Life Sciences GS-20 pyrosequencer. This approach yielded in excess of 58 million bases of high-quality sequence. The sequence information was combined with 2,616 reads obtained by traditional suppressive subtractive hybridizations to derive a total of 31,391 unique sequences. Annotation and coding sequences were predicted for these transcripts where possible. 16,350 annotated transcripts were selected as target sequences for the design of the custom largemouth bass oligonucleotide microarray. The microarray was validated by examining the transcriptomic response in male largemouth bass exposed to 17beta-oestradiol. Transcriptomic responses were assessed in liver and gonad, and indicated gene expression profiles typical of exposure to oestradiol. The results demonstrate the potential to rapidly create the tools necessary to assess large scale transcriptional responses in non-model species, paving the way for expanded impact of toxicogenomics in ecotoxicology.

12.
Genome Announc ; 5(28)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28705966

RESUMO

The lack of Oxalobacter formigenes colonization in the human gut is generally acknowledged as a risk factor for kidney stone formation since this microorganism can play an important role in oxalate homeostasis. Here, we present the genome sequence of OXCC13, a human strain isolated from an individual residing in Germany.

13.
Genome Announc ; 5(27)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684568

RESUMO

The lack of Oxalobacter formigenes colonization of the human gut has been correlated with the formation of calcium oxalate kidney stones and also with the number of recurrent kidney stone episodes. Here, we present the genome sequence of HC-1, a human strain isolated from an individual residing in Iowa, USA.

14.
J Clin Invest ; 127(11): 3970-3986, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28945202

RESUMO

Consumption of human breast milk (HBM) attenuates the incidence of necrotizing enterocolitis (NEC), which remains a leading and intractable cause of mortality in preterm infants. Here, we report that this diminution correlates with alterations in the gut microbiota, particularly enrichment of Propionibacterium species. Transfaunation of microbiota from HBM-fed preterm infants or a newly identified and cultured Propionibacterium strain, P. UF1, to germfree mice conferred protection against pathogen infection and correlated with profound increases in intestinal Th17 cells. The induction of Th17 cells was dependent on bacterial dihydrolipoamide acetyltransferase (DlaT), a major protein expressed on the P. UF1 surface layer (S-layer). Binding of P. UF1 to its cognate receptor, SIGNR1, on dendritic cells resulted in the regulation of intestinal phagocytes. Importantly, transfer of P. UF1 profoundly mitigated induced NEC-like injury in neonatal mice. Together, these results mechanistically elucidate the protective effects of HBM and P. UF1-induced immunoregulation, which safeguard against proinflammatory diseases, including NEC.


Assuntos
Propionibacterium/imunologia , Células Th17/fisiologia , Animais , Proteínas de Bactérias/fisiologia , Diferenciação Celular , Colo/imunologia , Colo/microbiologia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/fisiologia , Feminino , Microbioma Gastrointestinal , Genoma Bacteriano , Humanos , Imunomodulação , Recém-Nascido , Recém-Nascido Prematuro , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Propionibacterium/enzimologia , Propionibacterium/genética , Análise de Sequência de DNA
15.
Genome Announc ; 5(2)2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28082501

RESUMO

Porphyromonas gingivalis is associated with both oral and systemic diseases. Strain-specific P. gingivalis invasion phenotypes do not reliably predict disease presentation during in vivo studies. Here, we present the genome sequence of 381, a common laboratory strain, with a single contig of 2,378,872 bp and a G+C content of 48.36%.

16.
Genome Announc ; 5(10)2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28280013

RESUMO

Porphyromonas gingivalis is an oral opportunistic pathogen. Sequenced P. gingivalis laboratory strains display limited diversity in antigens that modulate host responses. Here, we present the genome sequence of A7A1-28, a strain possessing atypical fimbrillin and capsule types, with a single contig of 2,249,024 bp and a G+C content of 48.58%.

17.
Mol Plant Microbe Interact ; 19(1): 69-79, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16404955

RESUMO

An 8x draft genome was obtained and annotated for Ralstonia solanacearum race 3 biovar 2 (R3B2) strain UW551, a United States Department of Agriculture Select Agent isolated from geranium. The draft UW551 genome consisted of 80,169 reads resulting in 582 contigs containing 5,925,491 base pairs, with an average 64.5% GC content. Annotation revealed a predicted 4,454 protein coding open reading frames (ORFs), 43 tRNAs, and 5 rRNAs; 2,793 (or 62%) of the ORFs had a functional assignment. The UW551 genome was compared with the published genome of R. solanacearum race 1 biovar 3 tropical tomato strain GMI1000. The two phylogenetically distinct strains were at least 71% syntenic in gene organization. Most genes encoding known pathogenicity determinants, including predicted type III secreted effectors, appeared to be common to both strains. A total of 402 unique UW551 ORFs were identified, none of which had a best hit or >45% amino acid sequence identity with any R. solanacearum predicted protein; 16 had strong (E < 10(-13)) best hits to ORFs found in other bacterial plant pathogens. Many of the 402 unique genes were clustered, including 5 found in the hrp region and 38 contiguous, potential prophage genes. Conservation of some UW551 unique genes among R3B2 strains was examined by polymerase chain reaction among a group of 58 strains from different races and biovars, resulting in the identification of genes that may be potentially useful for diagnostic detection and identification of R3B2 strains. One 22-kb region that appears to be present in GMI1000 as a result of horizontal gene transfer is absent from UW551 and encodes enzymes that likely are essential for utilization of the three sugar alcohols that distinguish biovars 3 and 4 from biovars 1 and 2.


Assuntos
Fases de Leitura Aberta/genética , Ralstonia solanacearum/classificação , Ralstonia solanacearum/genética , Arginina , Genes Bacterianos , Genoma Bacteriano/genética , Família Multigênica , Regiões Promotoras Genéticas , Prófagos , Transporte Proteico , Ralstonia solanacearum/patogenicidade , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Virulência
18.
BMC Plant Biol ; 6: 17, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16934154

RESUMO

BACKGROUND: Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae). RESULTS: More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6x in Nandina and 17.3x in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with approximately 60% of all errors associated with homopolymer runs of 5 or more nucleotides and approximately 50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. CONCLUSION: Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid genome sequence was generated for a significant reduction in time and cost over traditional shotgun-based genome sequencing techniques, although with approximately half the coverage of previously reported GS 20 de novo genome sequence. The GS 20 should be broadly applicable to angiosperm plastid genome sequencing, and therefore promises to expand the scale of plant genetic and phylogenetic research dramatically.


Assuntos
Genoma de Planta , Magnoliopsida/genética , Plastídeos/genética , Sequência de Bases , Cloroplastos/genética , Cloroplastos/ultraestrutura , Mapeamento de Sequências Contíguas/métodos , DNA de Plantas/genética , Biblioteca Gênica , Magnoliopsida/classificação , Folhas de Planta/genética , Reprodutibilidade dos Testes
19.
Genome Biol Evol ; 8(9): 2952-2963, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27614234

RESUMO

Sigma virus (DMelSV) is ubiquitous in natural populations of Drosophila melanogaster. Host-mediated, selective RNA editing of adenosines to inosines (ADAR) may contribute to control of viral infection by preventing transcripts from being transported into the cytoplasm or being translated accurately; or by increasing the viral genomic mutation rate. Previous PCR-based studies showed that ADAR mutations occur in DMelSV at low frequency. Here we use SOLiDTM deep sequencing of flies from a single host population from Athens, GA, USA to comprehensively evaluate patterns of sequence variation in DMelSV with respect to ADAR. GA dinucleotides, which are weak targets of ADAR, are strongly overrepresented in the positive strand of the virus, consistent with selection to generate ADAR resistance on this complement of the transient, double-stranded RNA intermediate in replication and transcription. Potential ADAR sites in a worldwide sample of viruses are more likely to be "resistant" if the sites do not vary among samples. Either variable sites are less constrained and hence are subject to weaker selection than conserved sites, or the variation is driven by ADAR. We also find evidence of mutations segregating within hosts, hereafter referred to as hypervariable sites. Some of these sites were variable only in one or two flies (i.e., rare); others were shared by four or even all five of the flies (i.e., common). Rare and common hypervariable sites were indistinguishable with respect to susceptibility to ADAR; however, polymorphism in rare sites were more likely to be consistent with the action of ADAR than in common ones, again suggesting that ADAR is deleterious to the virus. Thus, in DMelSV, host mutagenesis is constraining viral evolution both within and between hosts.


Assuntos
Drosophila melanogaster/virologia , Genoma Viral , Vírus de Insetos/genética , Taxa de Mutação , Rhabdoviridae/genética , Adenosina/genética , Animais , Interações Hospedeiro-Patógeno , Inosina/genética , Mutagênese , Polimorfismo Genético , Edição de RNA
20.
Sci Rep ; 6: 36115, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27786291

RESUMO

Vibrio cholerae is ubiquitous in aquatic environments, with environmental toxigenic V. cholerae O1 strains serving as a source for recurrent cholera epidemics and pandemic disease. However, a number of questions remain about long-term survival and evolution of V. cholerae strains within these aquatic environmental reservoirs. Through monitoring of the Haitian aquatic environment following the 2010 cholera epidemic, we isolated two novel non-toxigenic (ctxA/B-negative) Vibrio cholerae O1. These two isolates underwent whole-genome sequencing and were investigated through comparative genomics and Bayesian coalescent analysis. These isolates cluster in the evolutionary tree with strains responsible for clinical cholera, possessing genomic components of 6th and 7th pandemic lineages, and diverge from "modern" cholera strains around 1548 C.E. [95% HPD: 1532-1555]. Vibrio Pathogenicity Island (VPI)-1 was present; however, SXT/R391-family ICE and VPI-2 were absent. Rugose phenotype conversion and vibriophage resistance evidenced adaption for persistence in aquatic environments. The identification of V. cholerae O1 strains in the Haitian environment, which predate the first reported cholera pandemic in 1817, broadens our understanding of the history of pandemics. It also raises the possibility that these and similar environmental strains could acquire virulence genes from the 2010 Haitian epidemic clone, including the cholera toxin producing CTXϕ.


Assuntos
Cólera/microbiologia , Vibrio cholerae O1/genética , Teorema de Bayes , Cólera/epidemiologia , Cólera/patologia , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Haiti/epidemiologia , Humanos , Pandemias , Filogenia , Análise de Sequência de DNA , Vibrio cholerae O1/classificação , Vibrio cholerae O1/isolamento & purificação , Microbiologia da Água , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA