Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 379, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354360

RESUMO

The emergence of Multidrug-resistant (MDR) bacteria are becoming a major worldwide health concern, encouraging the development effective alternatives to conventional antibiotics. The study identified P. aeruginosa and assessed its antimicrobial sensitivity using the Vitek-2 system. Carbapenem-resistant genes were detected through Polymerase chain reaction (PCR). MDR- P. aeruginosa isolates were used to biosynthesize titanium dioxide nanoparticles (TiO2NPs) and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM). A study involving 78 P. aeruginosa isolates revealed that 85.8% were MDR, with meropenem and amikacin showing effectiveness against 70% of the isolates. The most prevalent carbapenemase gene was blaOXA-48, present in 83% of the isolates. Majority of the isolates formed biofilms, and biosynthesized TiO2NPs were able to reduce biofilm formation by 94%. TiO2NPs exhibited potent antibacterial action against MDR-Gram-negative bacilli pathogens and showed synergistic activity with antibiotics, particularly piperacillin, with a significant fold increase in areas (283%). A new local strain of P. aeruginosa, identified as ON678251 in the World GenBank, was found capable of producing TiO2NPs. Our findings demonstrate the potential of biosynthesized TiO2NPs to manage antibiotic resistance and regulate the formation of biofilms. This presents a promising direction for the creation of novel antimicrobial agents or substitutes for use in clinical settings, particularly in the management of isolates capable of resisting multiple drugs.


Assuntos
Antibacterianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Titânio , Titânio/química , Titânio/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Nanopartículas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Nanopartículas Metálicas/química , Sinergismo Farmacológico , Humanos , Difração de Raios X
2.
Immun Inflamm Dis ; 10(3): e582, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34939346

RESUMO

BACKGROUND: Abnormal inflammation coagulation biomarker levels of troponin, C-reactive protein (CRP), and D-dimer levels in serum have been demonstrated to be associated and involved in the disease progression of coronavirus disease 2019 (COVID-19). METHODS: First: the study aimed to investigate the correlation of troponin, CRP, d-dimer, white blood cell (WBC) and polymerase chain reaction-cycle threshold (PCR-Ct) within COVID-19 survivors (143 patients; 79 males, 64 females) and in deceased (30 patients; 12 males, 18 females) group. Also, assessing any differences between both groups in studied parameters. Second: a correlation study of studied parameters' level has been conducted within families (41 patients; 23 males [seven deaths] and 18 females [eight deaths]) that lost more than one member due to the severity of the disease. Also, differences between these family and control group (132 patients; 69 males and 63 females) group in studied parameters have been assessed. RESULTS: In the first week of hospitalization, there were significant differences in D-dimer, CRP and troponin level between survived and deceased patient groups. In the second week of the admission, both groups had significant differences in the level of all studied parameters; troponin I, D-dimer, CRP, and WBCs. WBC levels positively correlated to CRP in male survivors (r = 0.75, p < 0.0001), and to troponin in deceased male patients (r = 0.74, p = 0.007). The second week of patient admission was critical in the group of families who lost more than one person, when troponin was correlated positively with D-dimer, CRP, and WBCs. CONCLUSION: Troponin, D-dimer, CRP, and WBCs level were significantly higher in COVID-19 patients who died than in COVID-19 survivors. High troponin and WBC levels, were considerably associated with families that lost more than one member, when compared with the unrelated COVID-19 patient control.


Assuntos
COVID-19 , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio , Humanos , Masculino , Estudos Retrospectivos , SARS-CoV-2 , Troponina
3.
Microb Drug Resist ; 25(1): 32-38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30067166

RESUMO

Nosocomial infections occur worldwide and also in the Kurdistan region. Frequently patients colonized with multiresistant Pseudomonas aeruginosa isolates are encountered in many hospitals. As information is lacking with respect to the mechanisms of resistance responsible for the multiresistant character of the P. aeruginosa isolates and their genetic relationship, isolates were prospectively collected and characterized with respect to their mechanism of resistance. During 2012 and 2013, 81 P. aeruginosa isolates were collected from three teaching hospitals in the city of Erbil, Iraq. Susceptibility testing was performed using the VITEK-2 system. Isolates were screened for the presence of extended-spectrum ß-lactamases (ESBLs) and for the presence of metallo ß-lactamases (MBLs). The presence of serine carbapenemases was detected by PCR. The genetic relationship of the isolates was demonstrated by amplified fragment length polymorphism (AFLP). Susceptibility results revealed high rates of resistance against all classes of antibiotics except polymyxins. Genetic characterization demonstrated the presence of ESBL-genes, that is, blaVEB (30%) and blaPER (17%), also ESBL blaPME was detected in four isolates. AFLP typing revealed clonal spread of blaVEB, blaPER, and three clusters of blaOXA-10-positive isolates. Only one isolate was MBL (blaVIM) positive. Of a selected number of isolates (n = 11), whole-genome sequencing analysis revealed that these isolates belonged to "high-risk" MLSTs ST244, ST235, ST308, and ST654. This study reveals the presence and clonal spread of widely resistant high-risk clones of P. aeruginosa in Iraqi Kurdistan. As far as we are aware, this is the first report of multiple, polyclonal, PME producing P. aeruginosa outside the Arabian Peninsula.


Assuntos
Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , beta-Lactamases/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Iraque , Testes de Sensibilidade Microbiana/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição/genética , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA