Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Eur Respir J ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231629

RESUMO

Streptococcus pneumoniae (S.p.) is the most common causative agent of community-acquired pneumonia worldwide. A key pathogenic mechanism that exacerbates severity of disease is the disruption of the alveolar-capillary barrier. However, the specific virulence mechanisms responsible for this in the human lung are not yet fully understood.In this study, we infected living human lung tissue with S.p. and observed a significant degradation of the central junctional proteins occludin and VE-cadherin, indicating barrier disruption. Surprisingly, neither pneumolysin, bacterial hydrogen peroxide nor pro-inflammatory activation were sufficient to cause this junctional degradation. Instead, pneumococcal infection led to a significant decrease of pH (approximately 6), resulting in acidification of the alveolar microenvironment, which was linked to junctional degradation. Stabilising the pH at physiological levels during infection reversed this effect, even in a therapeutic-like approach.Further analysis of bacterial metabolites and RNA sequencing revealed sugar consumption and subsequent lactate production were the major factors contributing to bacterially induced alveolar acidification, which also hindered the release of critical immune factors.Our findings highlight bacterial metabolite-induced acidification as an independent virulence mechanism for barrier disruption and inflammatory dysregulation in pneumonia. Thus, our data suggest that strictly monitoring and buffering alveolar pH during infections caused by fermentative bacteria could serve as an adjunctive therapeutic strategy for sustaining barrier integrity and immune response.

2.
Histochem Cell Biol ; 160(2): 83-96, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37386200

RESUMO

Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy. Lung tissue was treated with either heparinase (HEP), known to shed glycocalyx components, or pneumolysin (PLY), the exotoxin of Streptococcus pneumoniae not investigated for structural glycocalyx effects so far. Cationic colloidal thorium dioxide (cThO2) particles were used for glycocalyx glycosaminoglycan visualization. The level of cThO2 particles orthogonal to apical cell membranes (≙ stained glycosaminoglycan height) of alveolar epithelial type I (AEI) and type II (AEII) cells was stereologically measured. In addition, cThO2 particle density was studied by dual-axis electron tomography (≙ stained glycosaminoglycan density in three dimensions). For untreated samples, the average cThO2 particle level was ≈ 18 nm for human AEI, ≈ 17 nm for mouse AEI, ≈ 44 nm for human AEII and ≈ 35 nm for mouse AEII. Both treatments, HEP and PLY, resulted in a significant reduction of cThO2 particle levels on human and mouse AEI and AEII. Moreover, a HEP- and PLY-associated reduction in cThO2 particle density was observed. The present study provides quantitative data on the differential glycocalyx distribution on AEI and AEII based on cThO2 and demonstrates alveolar glycocalyx shedding in response to HEP or PLY resulting in a structural reduction in both glycosaminoglycan height and density. Future studies should elucidate the underlying alveolar epithelial cell type-specific distribution of glycocalyx subcomponents for better functional understanding.


Assuntos
Glicocálix , Dióxido de Tório , Camundongos , Humanos , Animais , Heparina Liase , Elétrons , Glicosaminoglicanos
3.
Eur Respir J ; 60(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35728978

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilises the angiotensin-converting enzyme 2 (ACE2) transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive. METHODS: Spectral microscopy, single-cell/-nucleus RNA sequencing or ACE2 "gain-of-function" experiments were applied to infected human lung explants and adult stem cell derived human lung organoids to correlate ACE2 and related host factors with SARS-CoV-2 tropism, propagation, virulence and immune activation compared to SARS-CoV, influenza and Middle East respiratory syndrome coronavirus (MERS-CoV). Coronavirus disease 2019 (COVID-19) autopsy material was used to validate ex vivo results. RESULTS: We provide evidence that alveolar ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation and virus-induced tissue damage in the human alveolus. Instead, ex vivo infected human lungs and COVID-19 autopsy samples showed that alveolar macrophages were frequently positive for SARS-CoV-2. Single-cell/-nucleus transcriptomics further revealed nonproductive virus uptake and a related inflammatory and anti-viral activation, especially in "inflammatory alveolar macrophages", comparable to those induced by SARS-CoV and MERS-CoV, but different from NL63 or influenza virus infection. CONCLUSIONS: Collectively, our findings indicate that severe lung injury in COVID-19 probably results from a macrophage-triggered immune activation rather than direct viral damage of the alveolar compartment.


Assuntos
COVID-19 , Influenza Humana , Adulto , Humanos , Enzima de Conversão de Angiotensina 2 , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Tropismo Viral
4.
Eur Respir J ; 50(1)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28705941

RESUMO

The severity and lethality of influenza A virus (IAV) infections is frequently aggravated by secondary bacterial pneumonia. However, the mechanisms in human lung tissue that provoke this increase in fatality are unknown and therapeutic immune modulatory options are lacking.We established a human lung ex vivo co-infection model to investigate innate immune related mechanisms contributing to the susceptibility of secondary pneumococcal pneumonia.We revealed that type I and III interferon (IFN) inhibits Streptococcus pneumoniae-induced interleukin (IL)-1ß release. The lack of IL-1ß resulted in the repression of bacterially induced granulocyte-macrophage colony-stimulating factor (GM-CSF) liberation. Specific inhibition of IFN receptor I and III-associated tyrosine kinase 2 (Tyk2) completely restored the S. pneumoniae-induced IL-1ß-GM-CSF axis, leading to a reduction of bacterial growth. A preceding IAV infection of the human alveolus leads to a type I and III IFN-dependent blockade of the early cytokines IL-1ß and GM-CSF, which are key for orchestrating an adequate innate immune response against bacteria. Their virally induced suppression may result in impaired bacterial clearance and alveolar repair.Pharmacological inhibition of Tyk2 might be a new treatment option to sustain beneficial endogenous GM-CSF levels in IAV-associated secondary bacterial pneumonia.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Influenza Humana/tratamento farmacológico , Interferons/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , TYK2 Quinase/antagonistas & inibidores , Humanos , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos , Vírus da Influenza A , Influenza Humana/imunologia , Interleucina-1beta/metabolismo , Pulmão/efeitos dos fármacos , Pneumonia Bacteriana/imunologia , Infecções Estafilocócicas/imunologia , TYK2 Quinase/metabolismo
5.
Histochem Cell Biol ; 147(6): 707-719, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28247028

RESUMO

Loss of alveolar barrier function with subsequent respiratory failure is a hallmark of severe pneumonia. Although junctions between endo- and epithelial cells regulate paracellular fluid flux, little is known about their composition and regulation in the human alveolar compartment. High autofluorescence of human lung tissue in particular complicates the determination of subcellular protein localization. By comparing conventional channel mode confocal imaging with spectral imaging and linear unmixing, we demonstrate that background fluorescent spectra and fluorophore signals could be rigorously separated resulting in complete recovery of the specific signal at a high signal-to-noise ratio. Using this technique and Western blotting, we show the expression patterns of tight junction proteins occludin, ZO-1 as well as claudin-3, -4, -5 and -18 and adherence junction protein VE-cadherin in naive or Streptococcus pneumoniae-infected human lung tissue. In uninfected tissues, occludin and ZO-1 formed band-like structures in alveolar epithelial cells type I (AEC I), alveolar epithelial cells type II (AEC II) and lung capillaries, whereas claudin-3, -4 and -18 were visualised in AEC II. Claudin-5 was detected in the endothelium only. Claudin-3, -5, -18 displayed continuous band-like structures, while claudin-4 showed a dot-like expression. Pneumococcal infection reduced alveolar occludin, ZO-1, claudin-5 and VE-cadherin but did not change the presence of claudin-3, -4 and -18. Spectral confocal microscopy allows for the subcellular structural analysis of proteins in highly autofluorescent human lung tissue. The thereby observed deterioration of lung alveolar junctional organisation gives a structural explanation for alveolar barrier disruption in severe pneumococcal pneumonia.


Assuntos
Caderinas/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/metabolismo , Infecções Pneumocócicas/metabolismo , Alvéolos Pulmonares/anormalidades , Humanos , Síndrome da Persistência do Padrão de Circulação Fetal/microbiologia , Infecções Pneumocócicas/microbiologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/microbiologia , Streptococcus pneumoniae
7.
Stem Cell Reports ; 19(5): 629-638, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38670110

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection primarily affects the lung but can also cause gastrointestinal (GI) symptoms. In vitro experiments confirmed that SARS-CoV-2 robustly infects intestinal epithelium. However, data on infection of adult gastric epithelium are sparse and a side-by-side comparison of the infection in the major segments of the GI tract is lacking. We provide this direct comparison in organoid-derived monolayers and demonstrate that SARS-CoV-2 robustly infects intestinal epithelium, while gastric epithelium is resistant to infection. RNA sequencing and proteome analysis pointed to angiotensin-converting enzyme 2 (ACE2) as a critical factor, and, indeed, ectopic expression of ACE2 increased susceptibility of gastric organoid-derived monolayers to SARS-CoV-2. ACE2 expression pattern in GI biopsies of patients mirrors SARS-CoV-2 infection levels in monolayers. Thus, local ACE2 expression limits SARS-CoV-2 expression in the GI tract to the intestine, suggesting that the intestine, but not the stomach, is likely to be important in viral replication and possibly transmission.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Mucosa Gástrica , Mucosa Intestinal , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/fisiologia , Humanos , COVID-19/virologia , COVID-19/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/virologia , Tropismo Viral , Organoides/virologia , Organoides/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Replicação Viral , Animais
8.
Front Cell Infect Microbiol ; 13: 1224356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492528

RESUMO

Introduction: Tularemia is mainly caused by Francisella tularensis (Ft) subsp. tularensis (Ftt) and Ft subsp. holarctica (Ftt) in humans and in more than 200 animal species including rabbits and hares. Human clinical manifestations depend on the route of infection and range from flu-like symptoms to severe pneumonia with a mortality rate up to 60% without treatment. So far, only 2D cell culture and animal models are used to study Francisella virulence, but the gained results are transferable to human infections only to a certain extent. Method: In this study, we firstly established an ex vivo human lung tissue infection model using different Francisella strains: Ftt Life Vaccine Strain (LVS), Ftt LVS ΔiglC, Ftt human clinical isolate A-660 and a German environmental Francisella species strain W12-1067 (F-W12). Human lung tissue was used to determine the colony forming units and to detect infected cell types by using spectral immunofluorescence and electron microscopy. Chemokine and cytokine levels were measured in culture supernatants. Results: Only LVS and A-660 were able to grow within the human lung explants, whereas LVS ΔiglC and F-W12 did not replicate. Using human lung tissue, we observed a greater increase of bacterial load per explant for patient isolate A-660 compared to LVS, whereas a similar replication of both strains was observed in cell culture models with human macrophages. Alveolar macrophages were mainly infected in human lung tissue, but Ftt was also sporadically detected within white blood cells. Although Ftt replicated within lung tissue, an overall low induction of pro-inflammatory cytokines and chemokines was observed. A-660-infected lung explants secreted slightly less of IL-1ß, MCP-1, IP-10 and IL-6 compared to Ftt LVS-infected explants, suggesting a more repressed immune response for patient isolate A-660. When LVS and A-660 were used for simultaneous co-infections, only the ex vivo model reflected the less virulent phenotype of LVS, as it was outcompeted by A-660. Conclusion: We successfully implemented an ex vivo infection model using human lung tissue for Francisella. The model delivers considerable advantages and is able to discriminate virulent Francisella from less- or non-virulent strains and can be used to investigate the role of specific virulence factors.


Assuntos
Francisella tularensis , Tularemia , Animais , Humanos , Coelhos , Camundongos , Francisella tularensis/genética , Tularemia/microbiologia , Citocinas/metabolismo , Pulmão/microbiologia , Quimiocinas/metabolismo , Vacinas Bacterianas , Camundongos Endogâmicos C57BL
10.
Eur Respir J ; 40(6): 1458-67, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22441740

RESUMO

The majority of cases of community-acquired pneumonia are caused by Streptococcus pneumoniae and most studies on pneumococcal host interaction are based on cell culture or animal experiments. Thus, little is known about infections in human lung tissue. Cyclooxygenase-2 and its metabolites play an important regulatory role in lung inflammation. Therefore, we established a pneumococcal infection model on human lung tissue demonstrating mitogen-activated protein kinase (MAPK)-dependent induction of cyclooxygenase-2 and its related metabolites. In addition to alveolar macrophages and the vascular endothelium, cyclooxygenase-2 was upregulated in alveolar type II but not type I epithelial cells, which was confirmed in lungs of patients suffering from acute pneumonia. Moreover, we demonstrated the expression profile of all four E prostanoid receptors at the mRNA level and showed functionality of the E prostanoid(4) receptor by cyclic adenosine monophosphate production. Additionally, in comparison to previous studies, cyclooxygenase-2/prostaglandin E(2) related pro- and anti-inflammatory mediator regulation was partly confirmed in human lung tissue after pneumococcal infection. Overall, cell type-specific and MAPK-dependent cyclooxygenase-2 expression and prostaglandin E(2) formation in human lung tissue may play an important role in the early phase of pneumococcal infections.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Pulmão/enzimologia , Pulmão/microbiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/metabolismo , Ensaio de Unidades Formadoras de Colônias , Dinoprostona/metabolismo , Células Epiteliais/microbiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica/métodos , Inflamação , Sistema de Sinalização das MAP Quinases , Microscopia de Fluorescência/métodos , Infecções Pneumocócicas/enzimologia , Prostaglandinas/metabolismo , Alvéolos Pulmonares/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA