Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Allergy Clin Immunol ; 153(3): 844-851, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995860

RESUMO

BACKGROUND: Studies have linked daily pollen counts to respiratory allergic health outcomes, but few have considered allergen levels. OBJECTIVE: We sought to assess associations of grass pollen counts and grass allergen levels (Phl p 5) with respiratory allergic health symptoms in a panel of 93 adults with moderate-severe allergic rhinitis and daily asthma hospital admissions in London, United Kingdom. METHODS: Daily symptom and medication scores were collected from adult participants in an allergy clinical trial. Daily counts of asthma hospital admissions in the London general population were obtained from Hospital Episode Statistics data. Daily grass pollen counts were measured using a volumetric air sampler, and novel Phl p 5 levels were measured using a ChemVol High Volume Cascade Impactor and ELISA analyses (May through August). Associations between the 2 pollen variables and daily health scores (dichotomized based on within-person 75th percentiles) were assessed using generalized estimating equation logistic models and with asthma hospital admissions using Poisson regression models. RESULTS: Daily pollen counts and Phl p 5 levels were each positively associated with reporting a high combined symptom and medication health score in separate models. However, in mutually adjusted models including terms for both pollen counts and Phl p 5 levels, associations remained for Phl p 5 levels (odds ratio [95% CI]: 1.18 [1.12, 1.24]), but were heavily attenuated for pollen counts (odds ratio [95% CI]: 1.00 [0.93, 1.07]). Similar trends were not observed for asthma hospital admissions in London. CONCLUSIONS: Grass allergen (Phl p 5) levels are more consistently associated with allergic respiratory symptoms than grass pollen counts.


Assuntos
Asma , Rinite Alérgica Sazonal , Rinite Alérgica , Adulto , Humanos , Rinite Alérgica Sazonal/epidemiologia , Pólen , Alérgenos , Poaceae , Asma/epidemiologia , Proteínas de Plantas/análise
2.
Lancet Oncol ; 25(1): 86-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096890

RESUMO

BACKGROUND: Cancers are the leading cause of death in England. We aimed to estimate trends in mortality from leading cancers from 2002 to 2019 for the 314 districts in England. METHODS: We did a high-resolution spatiotemporal analysis of vital registration data from the UK Office for National Statistics using data on all deaths from the ten leading cancers in England from 2002 to 2019. We used a Bayesian hierarchical model to obtain robust estimates of age-specific and cause-specific death rates. We used life table methods to calculate the primary outcome, the unconditional probability of dying between birth and age 80 years by sex, cancer cause of death, local district, and year. We reported Spearman rank correlations between the probability of dying from a cancer and district-level poverty in 2019. FINDINGS: In 2019, the probability of dying from a cancer before age 80 years ranged from 0·10 (95% credible interval [CrI] 0·10-0·11) to 0·17 (0·16-0·18) for women and from 0·12 (0·12-0·13) to 0·22 (0·21-0·23) for men. Variation in the probability of dying was largest for lung cancer among women, being 3·7 times (95% CrI 3·2-4·4) higher in the district with the highest probability than in the district with the lowest probability; and for stomach cancer for men, being 3·2 times (2·6-4·1) higher in the district with the highest probability than in the one with the lowest probability. The variation in the probability of dying was smallest across districts for lymphoma and multiple myeloma (95% CrI 1·2 times [1·1-1·4] higher in the district with the highest probability than the lowest probability for women and 1·2 times [1·0-1·4] for men), and leukaemia (1·1 times [1·0-1·4] for women and 1·2 times [1·0-1·5] for men). The Spearman rank correlation between probability of dying from a cancer and district poverty was 0·74 (95% CrI 0·72-0·76) for women and 0·79 (0·78-0·81) for men. From 2002 to 2019, the overall probability of dying from a cancer declined in all districts: the reductions ranged from 6·6% (95% CrI 0·3-13·1) to 30·1% (25·6-34·5) for women and from 12·8% (7·1-18·8) to 36·7% (32·2-41·2) for men. However, there were increases in mortality for liver cancer among men, lung cancer and corpus uteri cancer among women, and pancreatic cancer in both sexes in some or all districts with posterior probability greater than 0·80. INTERPRETATION: Cancers with modifiable risk factors and potential for screening for precancerous lesions had heterogeneous trends and the greatest geographical inequality. To reduce these inequalities, factors affecting both incidence and survival need to be addressed at the local level. FUNDING: Wellcome Trust, Imperial College London, UK Medical Research Council, and the National Institute of Health Research.


Assuntos
Neoplasias Hepáticas , Neoplasias Pulmonares , Masculino , Humanos , Feminino , Idoso de 80 Anos ou mais , Lactente , Causas de Morte , Teorema de Bayes , Fatores de Risco , Mortalidade
3.
Int J Cancer ; 154(11): 1900-1910, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339851

RESUMO

Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 µg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 µg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 µg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Gástricas , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Nitrogênio/efeitos adversos , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/etiologia , Incidência , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise
4.
Environ Res ; 252(Pt 3): 118942, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649012

RESUMO

Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 µm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 µg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 µg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 µg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Masculino , Feminino , Europa (Continente)/epidemiologia , Pessoa de Meia-Idade , Idoso , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Material Particulado/análise , Material Particulado/efeitos adversos , Adulto
5.
Br J Cancer ; 129(4): 656-664, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420001

RESUMO

BACKGROUND: Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown. METHODS: We pooled six European cohorts (N = 302,493) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0-191.9/C71.0-C71.9, 192.0/C72.2-C72.5. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 µg/m³ NO2, 1.17 (0.96, 1.41) per 5 µg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10-5m-1 BC, and 0.99 (0.84, 1.17) per 10 µg/m³ O3. CONCLUSIONS: We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM elements were not consistently associated with CNS tumour incidence.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Encefálicas , Ozônio , Humanos , Material Particulado/efeitos adversos , Dióxido de Nitrogênio , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/etiologia , Poluentes Atmosféricos/efeitos adversos
6.
Am J Respir Crit Care Med ; 205(12): 1429-1439, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35258439

RESUMO

Rationale: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. Objectives: We examined the association between long-term exposure to air pollution and pneumonia-related mortality in adults in a pool of eight European cohorts. Methods: Within the multicenter project ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter, nitrogen dioxide (NO2), black carbon (BC), and ozone were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. Measurements and Main Results: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity (hazard ratios, 1.12 [0.99-1.26] per 10 µg/m3 for NO2; 1.10 [0.97-1.24] per 0.5 10-5m-1 for BC). Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared with normal weight, unemployed, or nonsmoking participants. Conclusions: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Influenza Humana , Pneumonia , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise
7.
Eur J Public Health ; 33(4): 695-703, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263602

RESUMO

BACKGROUND: Analyses of coronavirus disease 19 suggest specific risk factors make communities more or less vulnerable to pandemic-related deaths within countries. What is unclear is whether the characteristics affecting vulnerability of small communities within countries produce similar patterns of excess mortality across countries with different demographics and public health responses to the pandemic. Our aim is to quantify community-level variations in excess mortality within England, Italy and Sweden and identify how such spatial variability was driven by community-level characteristics. METHODS: We applied a two-stage Bayesian model to quantify inequalities in excess mortality in people aged 40 years and older at the community level in England, Italy and Sweden during the first year of the pandemic (March 2020-February 2021). We used community characteristics measuring deprivation, air pollution, living conditions, population density and movement of people as covariates to quantify their associations with excess mortality. RESULTS: We found just under half of communities in England (48.1%) and Italy (45.8%) had an excess mortality of over 300 per 100 000 males over the age of 40, while for Sweden that covered 23.1% of communities. We showed that deprivation is a strong predictor of excess mortality across the three countries, and communities with high levels of overcrowding were associated with higher excess mortality in England and Sweden. CONCLUSION: These results highlight some international similarities in factors affecting mortality that will help policy makers target public health measures to increase resilience to the mortality impacts of this and future pandemics.


Assuntos
COVID-19 , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , COVID-19/epidemiologia , Pandemias , Suécia/epidemiologia , Teorema de Bayes , Inglaterra/epidemiologia , Itália/epidemiologia , Mortalidade
8.
Br J Cancer ; 126(10): 1499-1507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35173304

RESUMO

BACKGROUND: The evidence linking ambient air pollution to bladder cancer is limited and mixed. METHODS: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders. RESULTS: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93-1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99-1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00-1.16 per 10 ng/m3). CONCLUSIONS: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias da Bexiga Urinária , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Incidência , Masculino , Dióxido de Nitrogênio , Material Particulado/efeitos adversos , Doenças Raras , Neoplasias da Bexiga Urinária/epidemiologia , Neoplasias da Bexiga Urinária/etiologia , Zinco
9.
J Card Fail ; 28(6): 924-934, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35027315

RESUMO

BACKGROUND: Empirical evidence suggests a strong link between exposure to air pollution and heart failure incidence, hospitalizations, and mortality, but the biological basis of this remains unclear. We sought to determine the relationship between differential air pollution levels and changes in cardiac structure and function in patients with dilated cardiomyopathy. METHODS AND RESULTS: We undertook a prospective longitudinal observational cohort study of patients in England with dilated cardiomyopathy (enrollment 2009-2015, n = 716, 66% male, 85% Caucasian) and conducted cross sectional analysis at the time of study enrollment. Annual average air pollution exposure estimates for nitrogen dioxide (NO2) and particulate matter with diameter of 2.5 µm or less (PM2.5) at enrolment were assigned to each residential postcode (on average 12 households). The relationship between air pollution and cardiac morphology was assessed using linear regression modelling. Greater ambient exposure to NO2 was associated with higher indexed left ventricular (LV) mass (4.3 g/m2 increase per interquartile range increase in NO2, 95% confidence interval 1.9-7.0 g/m2) and lower LV ejection fraction (-1.5% decrease per interquartile range increase in NO2, 95% confidence interval -2.7% to -0.2%), independent of age, sex, socioeconomic status, and clinical covariates. The associations were robust to adjustment for smoking status and geographical clustering by postcode area. The effect of air pollution on LV mass was greatest in women. These effects were specific to NO2 exposure. CONCLUSIONS: Exposure to air pollution is associated with raised LV mass and lower LV ejection fraction, with the strongest effect in women. Although epidemiological associations between air pollution and heart failure have been established and supported by preclinical studies, our findings provide novel empirical evidence of cardiac remodeling and exposure to air pollution with important clinical and public health implications.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cardiomiopatia Dilatada/epidemiologia , Estudos Transversais , Feminino , Insuficiência Cardíaca/epidemiologia , Humanos , Masculino , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Estudos Prospectivos , Remodelação Ventricular
10.
Environ Sci Technol ; 56(13): 9277-9290, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35737879

RESUMO

We assessed mortality risks associated with source-specific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 µg/m3 increase) across five identified sources. On a 1 µg/m3 basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Humanos , Material Particulado/análise
11.
J Urban Health ; 99(6): 1012-1026, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357626

RESUMO

Exposure to non-optimal temperatures remains the single most deathful direct climate change impact to health. The risk varies based on the adaptation capacity of the exposed population which can be driven by climatic and/or non-climatic factors subject to fluctuations over time. We investigated temporal changes in the exposure-response relationship between daily mean temperature and mortality by cause of death, sex, age, and ethnicity in the megacity of São Paulo, Brazil (2000-2018). We fitted a quasi-Poisson regression model with time-varying distributed-lag non-linear model (tv-DLNM) to obtain annual estimates. We used two indicators of adaptation: trends in the annual minimum mortality temperature (MMT), i.e., temperature at which the mortality rate is the lowest, and in the cumulative relative risk (cRR) associated with extreme cold and heat. Finally, we evaluated their association with annual mean temperature and annual extreme cold and heat, respectively to assess the role of climatic and non-climatic drivers. In total, we investigated 4,471,000 deaths from non-external causes. We found significant temporal trends for both the MMT and cRR indicators. The former was decoupled from changes in AMT, whereas the latter showed some degree of alignment with extreme heat and cold, suggesting the role of both climatic and non-climatic adaptation drivers. Finally, changes in MMT and cRR varied substantially by sex, age, and ethnicity, exposing disparities in the adaptation capacity of these population groups. Our findings support the need for group-specific interventions and regular monitoring of the health risk to non-optimal temperatures to inform urban public health policies.


Assuntos
Temperatura Alta , Humanos , Brasil/epidemiologia
12.
Environ Res ; 215(Pt 2): 114385, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36154858

RESUMO

BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited. METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: The participants were followed from baseline (1985-2005) to 2011-2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5-95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 µg/m3 (12.8-39.2), 15.3 µg/m3 (8.6-19.2), 1.6 10-5 m-1 (0.7-2.1), and 87.0 µg/m3 (70.3-97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 µg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 µg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10-5 m-1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 µg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma. CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Renais , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Carbono/análise , Carcinógenos/análise , Cobre/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Ferro/análise , Rim , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/epidemiologia , Níquel , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Ozônio/análise , Material Particulado/análise , Material Particulado/toxicidade , Potássio/análise , Silício , Fuligem/análise , Enxofre/análise , Vanádio , Emissões de Veículos/análise , Zinco/análise
13.
Eur Heart J ; 42(21): 2072-2084, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33733673

RESUMO

AIMS: The aim of this study was to investigate the cross-sectional associations of modelled residential road traffic noise with cardiovascular disease risk factors [systolic (SBP) and diastolic blood pressure (DBP), C-reactive protein, triglycerides, glycated haemoglobin, and self-reported hypertension] in UK Biobank. METHODS AND RESULTS: The UK Biobank recruited 502 651 individuals aged 40-69 years across the UK during 2006-10. Road traffic noise (Lden and Lnight) exposure for 2009 was estimated at baseline address using a simplified version of the Common Noise Assessment Methods model. We used multivariable linear and logistic regression models, adjusting for age, sex, body mass index (BMI), smoking, alcohol intake, area- and individual-level deprivation, season of blood draw, length of time at residence, and nitrogen dioxide (main model), in an analytical sample size of over 370 000 participants. Exposure to road-traffic Lden >65 dB[A], as compared to ≤55 dB[A], was associated with 0.77% [95% confidence interval (CI) 0.60%, 0.95%], 0.49% (95% CI 0.32%, 0.65%), 0.79% (95% CI 0.11%, 1.47%), and 0.12% (95% CI -0.04%, 0.28%) higher SBP, DBP, triglycerides, and glycated haemoglobin, respectively. Removing BMI from the main model yielded significant positive associations with all five markers with elevated percent changes. The associations with SBP or DBP did not appear to be impacted by hypertension medication while a positive association with prevalent self-reported hypertension was seen in the non-medicated group who exposed to a Lden level of 60-65 dB[A] (odds ratio 1.07, 95% CI 1.00, 1.15). CONCLUSION: Exposure to road traffic noise >65 dB[A], independent of nitrogen dioxide, was associated with small but adverse changes in blood pressure and cardiovascular biochemistry.


Assuntos
Doenças Cardiovasculares , Ruído dos Transportes , Bancos de Espécimes Biológicos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos Transversais , Exposição Ambiental , Humanos , Ruído dos Transportes/efeitos adversos , Fatores de Risco , Reino Unido/epidemiologia
14.
Int J Cancer ; 149(11): 1887-1897, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34278567

RESUMO

Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter <2.5 µm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 µg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 µg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Neoplasias Hepáticas/etiologia , Adulto , Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Europa (Continente)/epidemiologia , Feminino , Humanos , Incidência , Neoplasias Hepáticas/epidemiologia , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Material Particulado/toxicidade , Modelos de Riscos Proporcionais
15.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088754

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5 µg·m-3 for PM2.5, 1.17 (95% CI 1.10-1.25) per 10 µg·m-3 for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5×10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , Exposição Ambiental/análise , Europa (Continente) , Humanos , Incidência , Material Particulado/análise , Suécia
16.
J Urban Health ; 98(3): 375-384, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33742376

RESUMO

Experiencing outdoor space, especially natural space, during childhood and adolescence has beneficial physical and mental health effects, including improved cognitive and motor skills and a lower risk of obesity. Since school-age children typically spend 35-40 hours per week at schools, we quantified their access to open (non-built-up) space and green space at schools in Greater London. We linked land use information from the UK Ordnance Survey with school characteristics from the Department for Education (DfE) for schools in Greater London. We estimated open space by isolating land and water features within school boundaries and, as a subset of open space, green space defined as open space covered by vegetation. We examined the relationship of both school open and green space with distance to Central London, whether the school was fee-paying, and the percentage of pupils eligible for free school meals (as a school-level indicator of socioeconomic status). Almost 400,000 pupils (30% of all pupils in London) attended schools with less than ten square metre per pupil of open space-the minimum recommended area by DfE-and 800,000 pupils attended schools with less than ten square metre per pupil of green space. Of the latter, 70% did not have any public parks in the immediate vicinity of their schools. School green space increased with distance from Central London. There was a weak association between the school-level socioeconomic indicator and the amount of open and green space. Fee-paying schools provided less open space compared to non-fee-paying schools in central parts of London, but the provision became comparable in suburban London. Many London schools do not provide enough open and green space. There is a need to ensure regular contact with green space through safeguarding school grounds from sales, financially supporting disadvantaged schools to increase their outdoor space and providing access to off-site facilities such as sharing outdoor space with other schools.


Assuntos
Parques Recreativos , Instituições Acadêmicas , Adolescente , Criança , Humanos , Londres , Classe Social , Fatores Socioeconômicos
17.
Environ Res ; 193: 110568, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33278469

RESUMO

BACKGROUND: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the "Effects of Low-level Air Pollution: A Study in Europe" (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence. METHODS: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). RESULTS: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m3 PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m3 PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m3 PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative. CONCLUSIONS: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Incidência , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Material Particulado/análise
18.
Am J Respir Crit Care Med ; 202(1): 112-123, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142356

RESUMO

Rationale: Exposure to air pollution during intrauterine development and through childhood may have lasting effects on respiratory health.Objectives: To investigate lung function at ages 8 and 15 years in relation to air pollution exposures during pregnancy, infancy, and childhood in a UK population-based birth cohort.Methods: Individual exposures to source-specific particulate matter ≤10 µm in aerodynamic diameter (PM10) during each trimester, 0-6 months, 7-12 months (1990-1993), and up to age 15 years (1991-2008) were examined in relation to FEV1% predicted and FVC% predicted at ages 8 (n = 5,276) and 15 (n = 3,446) years using linear regression models adjusted for potential confounders. A profile regression model was used to identify sensitive time periods.Measurements and Main Results: We did not find clear evidence of a sensitive exposure period for PM10 from road traffic. At age 8 years, 1 µg/m3 higher exposure during the first trimester was associated with lower FEV1% predicted (-0.826; 95% confidence interval [CI], -1.357 to -0.296) and FVC% predicted (-0.817; 95% CI, -1.357 to -0.276), but similar associations were seen for exposures for other trimesters, 0-6 months, 7-12 months, and 0-7 years. Associations were stronger among boys, as well as children whose mother had a lower education level or smoked during pregnancy. For PM10 from all sources, the third trimester was associated with lower FVC% predicted (-1.312; 95% CI, -2.100 to -0.525). At age 15 years, no adverse associations with lung function were seen.Conclusions: Exposure to road-traffic PM10 during pregnancy may result in small but significant reductions in lung function at age 8 years.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Material Particulado/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Adolescente , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Criança , Saúde da Criança , Pré-Escolar , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Feminino , Volume Expiratório Forçado , Nível de Saúde , Humanos , Lactente , Recém-Nascido , Modelos Lineares , Estudos Longitudinais , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/diagnóstico , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Reino Unido/epidemiologia , Emissões de Veículos/análise , Emissões de Veículos/toxicidade , Capacidade Vital
19.
Soc Psychiatry Psychiatr Epidemiol ; 56(9): 1587-1599, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33097984

RESUMO

PURPOSE: The World Health Organisation (WHO) recently ranked air pollution as the major environmental cause of premature death. However, the significant potential health and societal costs of poor mental health in relation to air quality are not represented in the WHO report due to limited evidence. We aimed to test the hypothesis that long-term exposure to air pollution is associated with poor mental health. METHODS: A prospective longitudinal population-based mental health survey was conducted of 1698 adults living in 1075 households in South East London, from 2008 to 2013. High-resolution quarterly average air pollution concentrations of nitrogen dioxide (NO2) and oxides (NOx), ozone (O3), particulate matter with an aerodynamic diameter < 10 µm (PM10) and < 2.5 µm (PM2.5) were linked to the home addresses of the study participants. Associations with mental health were analysed with the use of multilevel generalised linear models, after adjusting for large number of confounders, including the individuals' socioeconomic position and exposure to road-traffic noise. RESULTS: We found robust evidence for interquartile range increases in PM2.5, NOx and NO2 to be associated with 18-39% increased odds of common mental disorders, 19-30% increased odds of poor physical symptoms and 33% of psychotic experiences only for PM10. These longitudinal associations were more pronounced in the subset of non-movers for NO2 and NOx. CONCLUSIONS: The findings suggest that traffic-related air pollution is adversely affecting mental health. Whilst causation cannot be proved, this work suggests substantial morbidity from mental disorders could be avoided with improved air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Humanos , Estudos Longitudinais , Saúde Mental , Estudos Prospectivos
20.
Res Rep Health Eff Inst ; (208): 1-127, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-36106702

RESUMO

INTRODUCTION: Epidemiological cohort studies have consistently found associations between long-term exposure to outdoor air pollution and a range of morbidity and mortality endpoints. Recent evaluations by the World Health Organization and the Global Burden of Disease study have suggested that these associations may be nonlinear and may persist at very low concentrations. Studies conducted in North America in particular have suggested that associations with mortality persisted at concentrations of particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) well below current air quality standards and guidelines. The uncertainty about the shape of the concentration-response function at the low end of the concentration distribution, related to the scarcity of observations in the lowest range, was the basis of the current project. Previous studies have focused on PM2.5, but increasingly associations with nitrogen dioxide (NO2) are being reported, particularly in studies that accounted for the fine spatial scale variation of NO2. Very few studies have evaluated the effects of long-term exposure to low concentrations of ozone (O3). Health effects of black carbon (BC), representing primary combustion particles, have not been studied in most large cohort studies of PM2.5. Cohort studies assessing health effects of particle composition, including elements from nontailpipe traffic emissions (iron, copper, and zinc) and secondary aerosol (sulfur) have been few in number and reported inconsistent results. The overall objective of our study was to investigate the shape of the relationship between long-term exposure to four pollutants (PM2.5, NO2, BC, and O3) and four broad health effect categories using a number of different methods to characterize the concentration-response function (i.e., linear, nonlinear, or threshold). The four health effect categories were (1) natural- and cause-specific mortality including cardiovascular and nonmalignant as well as malignant respiratory and diabetes mortality; and morbidity measured as (2) coronary and cerebrovascular events; (3) lung cancer incidence; and (4) asthma and chronic obstructive pulmonary disease (COPD) incidence. We additionally assessed health effects of PM2.5 composition, specifically the copper, iron, zinc, and sulfur content of PM2,5. METHODS: We focused on analyses of health effects of air pollutants at low concentrations, defined as less than current European Union (EU) Limit Values, U.S. Environmental Protection Agency (U.S. EPA), National Ambient Air Quality Standards (NAAQS), and/or World Health Organization (WHO) Air Quality Guideline values for PM2.5, NO2, and O3. We address the health effects at low air pollution levels by performing new analyses within selected cohorts of the ESCAPE study (European Study of Cohorts for Air Pollution Effects; Beelen et al. 2014a) and within seven very large European administrative cohorts. By combining well-characterized ESCAPE cohorts and large administrative cohorts in one study the strengths and weaknesses of each approach can be addressed. The large administrative cohorts are more representative of national or citywide populations, have higher statistical power, and can efficiently control for area-level confounders, but have fewer possibilities to control for individual-level confounders. The ESCAPE cohorts have detailed information on individual confounders, as well as country-specific information on area-level confounding. The data from the seven included ESCAPE cohorts and one additional non-ESCAPE cohort have been pooled and analyzed centrally. More than 300,000 adults were included in the pooled cohort from existing cohorts in Sweden, Denmark, Germany, the Netherlands, Austria, France, and Italy. Data from the administrative cohorts have been analyzed locally, without transfer to a central database. Privacy regulations prevented transfer of data from administrative cohorts to a central database. More than 28 million adults were included from national administrative cohorts in Belgium, Denmark, England, the Netherlands, Norway, and Switzerland as well as an administrative cohort in Rome, Italy. We developed central exposure assessment using Europewide hybrid land use regression (LUR) models, which incorporated European routine monitoring data for PM2.5, NO2, and O3, and ESCAPE monitoring data for BC and PM2.5 composition, land use, and traffic data supplemented with satellite observations and chemical transport model estimates. For all pollutants, we assessed exposure at a fine spatial scale, 100 × 100 m grids. These models have been applied to individual addresses of all cohorts including the administrative cohorts. In sensitivity analyses, we applied the PM2.5 models developed within the companion HEI-funded Canadian MAPLE study (Brauer et al. 2019) and O3 exposures on a larger spatial scale for comparison with previous studies. Identification of outcomes included linkage with mortality, cancer incidence, hospital discharge registries, and physician-based adjudication of cases. We analyzed natural-cause, cardiovascular, ischemic heart disease, stroke, diabetes, cardiometabolic, respiratory, and COPD mortality. We also analyzed lung cancer incidence, incidence of coronary and cerebrovascular events, and incidence of asthma and COPD (pooled cohort only). We applied the Cox proportional hazard model with increasing control for individual- and area-level covariates to analyze the associations between air pollution and mortality and/or morbidity for both the pooled cohort and the individual administrative cohorts. Age was used as the timescale because of evidence that this results in better adjustment for potential confounding by age. Censoring occurred at the time of the event of interest, death from other causes, emigration, loss to follow-up for other reasons, or at the end of follow-up, whichever came first. A priori we specified three confounder models, following the modeling methods of the ESCAPE study. Model 1 included only age (time axis), sex (as strata), and calendar year of enrollment. Model 2 added individual-level variables that were consistently available in the cohorts contributing to the pooled cohort or all variables available in the administrative cohorts, respectively. Model 3 further added area-level socioeconomic status (SES) variables. A priori model 3 was selected as the main model. All analyses in the pooled cohort were stratified by subcohort. All analyses in the administrative cohorts accounted for clustering of the data in neighborhoods by adjusting the variance of the effect estimates. The main exposure variable we analyzed was derived from the Europewide hybrid models based on 2010 monitoring data. Sensitivity analyses were conducted using earlier time periods, time-varying exposure analyses, local exposure models, and the PM2.5 models from the Canadian MAPLE project. We first specified linear single-pollutant models. Two-pollutant models were specified for all combinations of the four main pollutants. Two-pollutant models for particle composition were analyzed with PM2.5 and NO2 as the second pollutant. We then investigated the shape of the concentration-response function using natural splines with two, three, and four degrees of freedom; penalized splines with the degrees of freedom determined by the algorithm and shape-constrained health impact functions (SCHIF) using confounder model 3. Additionally, we specified linear models in subsets of the concentration range, defined by removing concentrations above a certain value from the analysis, such as for PM2.5 25 µg/m3 (EU limit value), 20, 15, 12 µg/m3 (U.S. EPA National Ambient Air Quality Standard), and 10 µg/m3 (WHO Air Quality Guideline value). Finally, threshold models were evaluated to investigate whether the associations persisted below specific concentration values. For PM2.5, we evaluated 10, 7.5, and 5 µg/m3 as potential thresholds. Performance of threshold models versus the corresponding no-threshold linear model were evaluated using the Akaike information criterion (AIC). RESULTS: In the pooled cohort, virtually all subjects in 2010 had PM2.5 and NO2 annual average exposures below the EU limit values (25 µg/m3 and 40 µg/m3, respectively). More than 50,000 had a residential PM2.5 exposure below the U.S. EPA NAAQS (12 µg/m3). More than 25,000 subjects had a residential PM2.5 exposure below the WHO guideline (10 µg/m3). We found significant positive associations between PM2.5, NO2, and BC and natural-cause, respiratory, cardiovascular, and diabetes mortality. In our main model, the hazard ratios (HRs) (95% [confidence interval] CI) were 1.13 (CI = 1.11, 1.16) for an increase of 5 µg/m3 PM2.5, 1.09 (CI = 1.07, 1.10) for an increase of 10 µg/m3 NO2, and 1.08 (CI = 1.06, 1.10) for an increase of 0.5 × 10-5/m BC for natural-cause mortality. The highest HRs were found for diabetes mortality. Associations with O3 were negative, both in the fine spatial scale of the main ELAPSE model and in large spatial scale exposure models. For PM2.5, NO2, and BC, we generally observed a supralinear association with steeper slopes at low exposures and no evidence of a concentration below which no association was found. Subset analyses further confirmed that these associations remained at low levels: below 10 µg/m3 for PM2.5 and 20 µg/m3 for NO2. HRs were similar to the full cohort HRs for subjects with exposures below the EU limit values for PM2.5 and NO2, the U.S. NAAQS values for PM2.5, and the WHO guidelines for PM2.5 and NO2. The mortality associations were robust to alternative specifications of exposure, including different time periods, PM2.5 from the MAPLE project, and estimates from the local ESCAPE model. Time-varying exposure natural spline analyses confirmed associations at low pollution levels. HRs in two-pollutant models were attenuated but remained elevated and statistically significant forPM2.5 and NO2. In two-pollutant models of PM2.5 and NO2 HRs for natural-cause mortality were 1.08 (CI = 1.05, 1.11) for PM2.5 and 1.05 (CI = 1.03, 1.07) for NO2. Associations with O3 were attenuated but remained negative in two-pollutant models with NO2, BC, and PM2.5. We found significant positive associations between PM2.5, NO2, and BC and incidence of stroke and asthma and COPD hospital admissions. Furthermore, NO2 was significantly related to acute coronary heart disease and PM2.5 was significantly related to lung cancer incidence. We generally observed linear to supralinear associations with no evidence of a threshold, with the exception of the association between NO2 and acute coronary heart disease, which was sublinear. Subset analyses documented that associations remained even with PM2.5 below 20 µg/m3 and possibly 12 µg/m3. Associations remained even when NO2 was below 30 µg/m3 and in some cases 20 µg/m3. In two-pollutant models, NO2 was most consistently associated with acute coronary heart disease, stroke, asthma, and COPD hospital admissions. PM2.5 was not associated with these outcomes in two-pollutant models with NO2. PM2.5 was the only pollutant that was associated with lung cancer incidence in two-pollutant models. Associations with O3 were negative though generally not statistically significant. In the administrative cohorts, virtually all subjects in 2010 had PM2.5 and NO2 annual average exposures below the EU limit values. More than 3.9 million subjects had a residential PM2.5 exposure below the U.S. EPA NAAQS (12 µg/m3) and more than 1.9 million had residential PM2.5 exposures below the WHO guideline (10 µg/m3). We found significant positive associations between PM2.5, NO2, and BC and natural-cause, respiratory, cardiovascular, and lung cancer mortality, with moderate to high heterogeneity between cohorts. We found positive but statistically nonsignificant associations with diabetes mortality. In our main model meta-analysis, the HRs (95% CI) for natural-cause mortality were 1.05 (CI = 1.02, 1.09) for an increase of 5 µg/m3 PM2.5, 1.04 (CI = 1.02, 1.07) for an increase of 10 µg/m3 NO2, and 1.04 (CI = 1.02, 1.06) for an increase of 0.5 × 10-5/m BC, and 0.95 (CI = 0.93, 0.98) for an increase of 10 µg/m3 O3. The shape of the concentration-response functions differed between cohorts, though the associations were generally linear to supralinear, with no indication of a level below which no associations were found. Subset analyses documented that these associations remained at low levels: below 10 µg/m3 for PM2.5 and 20 µg/m3 for NO2. BC and NO2 remained significantly associated with mortality in two-pollutant models with PM2.5 and O3. The PM2.5 HR attenuated to unity in a two-pollutant model with NO2. The negative O3 association was attenuated to unity and became nonsignificant. The mortality associations were robust to alternative specifications of exposure, including time-varying exposure analyses. Time-varying exposure natural spline analyses confirmed associations at low pollution levels. Effect estimates in the youngest participants (<65 years at baseline) were much larger than in the elderly (>65 years at baseline). Effect estimates obtained with the ELAPSE PM2.5 model did not differ from the MAPLE PM2.5 model on average, but in individual cohorts, substantial differences were found. CONCLUSIONS: Long-term exposure to PM2.5, NO2, and BC was positively associated with natural-cause and cause-specific mortality in the pooled cohort and the administrative cohorts. Associations were found well below current limit values and guidelines for PM2.5 and NO2. Associations tended to be supralinear, with steeper slopes at low exposures with no indication of a threshold. Two-pollutant models documented the importance of characterizing the ambient mixture with both NO2 and PM2.5. We mostly found negative associations with O3. In two-pollutant models with NO2, the negative associations with O3 were attenuated to essentially unity in the mortality analysis of the administrative cohorts and the incidence analyses in the pooled cohort. In the mortality analysis of the pooled cohort, significant negative associations with O3 remained in two-pollutant models. Long-term exposure to PM2.5, NO2, and BC was also positively associated with morbidity outcomes in the pooled cohort. For stroke, asthma, and COPD, positive associations were found for PM2.5, NO2, and BC. For acute coronary heart disease, an increased HR was observed for NO2. For lung cancer, an increased HR was found only for PM2.5. Associations mostly showed steeper slopes at low exposures with no indication of a threshold.


Assuntos
Poluentes Atmosféricos , Asma , Doença das Coronárias , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Acidente Vascular Cerebral , Adulto , Idoso , Poluentes Atmosféricos/efeitos adversos , Canadá , Cobre/análise , Exposição Ambiental/efeitos adversos , Humanos , Incidência , Dióxido de Nitrogênio/efeitos adversos , Fuligem/análise , Enxofre/análise , Estados Unidos , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA