Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 18(6): 594-601, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988452

RESUMO

Stretchable semiconducting polymers have been developed as a key component to enable skin-like wearable electronics, but their electrical performance must be improved to enable more advanced functionalities. Here, we report a solution processing approach that can achieve multi-scale ordering and alignment of conjugated polymers in stretchable semiconductors to substantially improve their charge carrier mobility. Using solution shearing with a patterned microtrench coating blade, macroscale alignment of conjugated-polymer nanostructures was achieved along the charge transport direction. In conjunction, the nanoscale spatial confinement aligns chain conformation and promotes short-range π-π ordering, substantially reducing the energetic barrier for charge carrier transport. As a result, the mobilities of stretchable conjugated-polymer films have been enhanced up to threefold and maintained under a strain up to 100%. This method may also serve as the basis for large-area manufacturing of stretchable semiconducting films, as demonstrated by the roll-to-roll coating of metre-scale films.

2.
ACS Mater Lett ; 5(9): 2508-2517, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37680546

RESUMO

Delivering heat in vivo could enhance a wide range of biomedical therapeutic and diagnostic technologies, including long-term drug delivery devices and cancer treatments. To date, providing thermal energy is highly power-intensive, rendering it oftentimes inaccessible outside of clinical settings. We developed an in vivo heating method based on the exothermic reaction between liquid-metal-activated aluminum and water. After establishing a method for consistent activation, we characterized the heat generation capabilities with thermal imaging and heat flux measurements. We then demonstrated one application of this reaction: to thermally actuate a gastric resident device made from a shape-memory alloy called Nitinol. Finally, we highlight the advantages and future directions for leveraging this novel in situ heat generation method beyond the showcased example.

3.
Adv Healthc Mater ; 10(17): e2001916, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33899347

RESUMO

Owing to their excellent mechanical flexibility, mixed-conducting electrical property, and extraordinary chemical turnability, conjugated polymers have been demonstrated to be an ideal bioelectronic interface to deliver therapeutic effect in many different chronic diseases. This review article summarizes the latest advances in implantable electronics using conjugated polymers as electroactive materials and identifies remaining challenges and opportunities for developing electronic medicine. Examples of conjugated polymer-based bioelectronic devices are selectively reviewed in human clinical studies or animal studies with the potential for clinical adoption. The unique properties of conjugated polymers are highlighted and exemplified as potential solutions to address the specific challenges in electronic medicine.


Assuntos
Eletrônica , Polímeros , Animais , Eletrônica Médica , Humanos
4.
Adv Mater Technol ; 6(6)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34179344

RESUMO

Injectable 3D cell scaffolds possessing both electrical conductivity and native tissue-level softness would provide a platform to leverage electric fields to manipulate stem cell behavior. Granular hydrogels, which combine jamming-induced elasticity with repeatable injectability, are versatile materials to easily encapsulate cells to form injectable 3D niches. In this work, we demonstrate that electrically conductive granular hydrogels can be fabricated via a simple method involving fragmentation of a bulk hydrogel made from the conducting polymer PEDOT:PSS. These granular conductors exhibit excellent shear-thinning and self-healing behavior, as well as record-high electrical conductivity for an injectable 3D scaffold material (~10 S m-1). Their granular microstructure also enables them to easily encapsulate induced pluripotent stem cell (iPSC)-derived neural progenitor cells, which were viable for at least 5 days within the injectable gel matrices. Finally, we demonstrate gel biocompatibility with minimal observed inflammatory response when injected into a rodent brain.

5.
ACS Cent Sci ; 5(11): 1884-1891, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31807690

RESUMO

The next materials challenge in organic stretchable electronics is the development of a fully degradable semiconductor that maintains stable electrical performance under strain. Herein, we decouple the design of stretchability and transience by harmonizing polymer physics principles and molecular design in order to demonstrate for the first time a material that simultaneously possesses three disparate attributes: semiconductivity, intrinsic stretchability, and full degradability. We show that we can design acid-labile semiconducting polymers to appropriately phase segregate within a biodegradable elastomer, yielding semiconducting nanofibers that concurrently enable controlled transience and strain-independent transistor mobilities. Along with the future development of suitable conductors and device integration advances, we anticipate that these materials could be used to build fully biodegradable diagnostic or therapeutic devices that reside inside the body temporarily, or environmental monitors that are placed in the field and break down when they are no longer needed. This fully degradable semiconductor represents a promising advance toward developing multifunctional materials for skin-inspired electronic devices that can address previously inaccessible challenges and in turn create new technologies.

6.
Adv Mater ; 31(39): e1902869, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31414520

RESUMO

Due to their high water content and macroscopic connectivity, hydrogels made from the conducting polymer PEDOT:PSS are a promising platform from which to fabricate a wide range of porous conductive materials that are increasingly of interest in applications as varied as bioelectronics, regenerative medicine, and energy storage. Despite the promising properties of PEDOT:PSS-based porous materials, the ability to pattern PEDOT:PSS hydrogels is still required to enable their integration with multifunctional and multichannel electronic devices. In this work, a novel electrochemical gelation ("electrogelation") method is presented for rapidly patterning PEDOT:PSS hydrogels on any conductive template, including curved and 3D surfaces. High spatial resolution is achieved through use of a sacrificial metal layer to generate the hydrogel pattern, thereby enabling high-performance conducting hydrogels and aerogels with desirable material properties to be introduced into increasingly complex device architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA