RESUMO
Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.
Assuntos
Biodiversidade , Conservação dos Recursos Hídricos , Monitoramento Ambiental , Água Doce , Invertebrados , Animais , Espécies Introduzidas/tendências , Invertebrados/classificação , Invertebrados/fisiologia , Europa (Continente) , Atividades Humanas , Conservação dos Recursos Hídricos/estatística & dados numéricos , Conservação dos Recursos Hídricos/tendências , Hidrobiologia , Fatores de Tempo , Produção Agrícola , Urbanização , Aquecimento Global , Poluentes da Água/análiseRESUMO
Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies.
Assuntos
Ecossistema , Espécies Introduzidas , Animais , Europa (Continente) , Nova Zelândia , CaramujosRESUMO
DNA metabarcoding from the ethanol used to store macroinvertebrate bulk samples is a convenient methodological option in molecular biodiversity assessment and biomonitoring of aquatic ecosystems, as it preserves specimens and reduces problems associated with sample sorting. However, this method may be affected by errors and biases, which need to be thoroughly quantified before it can be mainstreamed into biomonitoring programmes. Here, we used 80 unsorted macroinvertebrate samples collected in Portugal under a Water Framework Directive monitoring programme, to compare community diversity and taxonomic composition metrics estimated through morphotaxonomy versus metabarcoding from storage ethanol using three markers (COI-M19BR2, 16S-Inse01 and 18S-Euka02) and a multimarker approach. A preliminary in silico analysis showed that the three markers were adequate for the target taxa, with detection failures related primarily to the lack of adequate barcodes in public databases. Metabarcoding of ethanol samples retrieved far less taxa per site (alpha diversity) than morphotaxonomy, albeit with smaller differences for COI-M19BR2 and the multimarker approach, while estimates of taxa turnover (beta diversity) among sites were similar across methods. Using generalized linear mixed models, we found that after controlling for differences in read coverage across samples, the probability of detection of a taxon was positively related to its proportional abundance, and negatively so to the presence of heavily sclerotized exoskeleton (e.g., Coleoptera). Overall, using our experimental protocol with different template dilutions, the COI marker showed the best performance, but we recommend the use of a multimarker approach to detect a wider range of taxa in freshwater macroinvertebrate samples. Further methodological development and optimization efforts are needed to reduce biases associated with body armouring and rarity in some macroinvertebrate taxa.
Assuntos
Código de Barras de DNA Taxonômico , Ecossistema , Viés , Biodiversidade , Água Doce , PortugalRESUMO
Leishmaniasis is one of the most serious diseases in the world and can be lethal if untreated. This is especially the case for visceral leishmaniasis, which is commonly caused by Leishmania (L.) infantum and for which available medication is still inadequate. A recently described antimicrobial peptide DRS 01 has been reported to kill L. infantum promastigotes, but nothing is known about its mode of action or effect on the cell. In this paper we report the visualization of the interaction between DRS 01 and L. infantum promastigotes using two high resolution microscopic techniques: atomic force microscopy and scanning electron microscopy. The results show considerable morphological changes at and above the IC50 in the treated cells. Both membrane damage and flagella alterations were observed. The results strongly suggest a membrane-directed action for DRS 01 on the Leishmania species studied. FROM THE CLINICAL EDITOR: In this paper, the effects of DRS 01, an antimicrobial peptide, is studied in Leishmania infantum using atomic force microscopy as well as standard scanning electron microscopy techniques, with the conclusion of a membrane-based effect by DRS 01 on the parasites.
Assuntos
Proteínas de Anfíbios/química , Peptídeos Catiônicos Antimicrobianos/química , Antiprotozoários/uso terapêutico , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Proteínas de Anfíbios/isolamento & purificação , Animais , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Membrana Celular/parasitologia , Flagelos , Humanos , Concentração Inibidora 50 , Leishmaniose Visceral/parasitologiaRESUMO
Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and short generation times manifest in rapid community responses to change. Macroinvertebrate community composition is an indicator of water quality. In Europe, efforts to improve water quality following environmental legislation, primarily starting in the 1980s, may have driven a recovery of macroinvertebrate communities. Towards understanding temporal and spatial variation of these organisms, we compiled the TREAM dataset (Time seRies of European freshwAter Macroinvertebrates), consisting of macroinvertebrate community time series from 1,816 river and stream sites (mean length of 19.2 years and 14.9 sampling years) of 22 European countries sampled between 1968 and 2020. In total, the data include >93 million sampled individuals of 2,648 taxa from 959 genera and 212 families. These data can be used to test questions ranging from identifying drivers of the population dynamics of specific taxa to assessing the success of legislative and management restoration efforts.
Assuntos
Invertebrados , Rios , Animais , Europa (Continente) , Água Doce , Dinâmica Populacional , Qualidade da Água , Biodiversidade , EcossistemaRESUMO
Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.
Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Invertebrados , Rios , Europa (Continente)RESUMO
Antimicrobial peptides (AMPs) from the dermaseptin and phylloseptin families were isolated from the skin secretion of Phyllomedusa nordestina, a recently described amphibian species from Northeastern Brazil. One dermaseptin and three phylloseptins were chosen for solid phase peptide synthesis. The antiprotozoal and antimicrobial activities of the synthetic peptides were determined, as well as their cytotoxicity in mouse peritoneal cells. AMPs are being considered as frameworks for the development of novel drugs inspired by their mechanism of action.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Pele/metabolismo , Proteínas de Anfíbios/química , Proteínas de Anfíbios/metabolismo , Proteínas de Anfíbios/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antiprotozoários/química , Antiprotozoários/farmacologia , Anuros , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Europe has experienced a substantial increase in non-indigenous crayfish species (NICS) since the mid-20th century due to their extensive use in fisheries, aquaculture and, more recently, pet trade. Despite relatively long invasion histories of some NICS and negative impacts on biodiversity and ecosystem functioning, large spatio-temporal analyses of their occurrences are lacking. Here, we used a large freshwater macroinvertebrate database to evaluate what information on NICS can be obtained from widely applied biomonitoring approaches and how usable such data is for descriptions of trends in identified NICS species. We found 160 time-series containing NICS between 1983 and 2019, to infer temporal patterns and environmental drivers of species and region-specific trends. Using a combination of meta-regression and generalized linear models, we found no significant temporal trend for the abundance of any species (Procambarus clarkii, Pacifastacus leniusculus or Faxonius limosus) at the European scale, but identified species-specific predictors of abundances. While analysis of the spatial range expansion of NICS was positive (i.e. increasing spread) in England and negative (significant retreat) in northern Spain, no trend was detected in Hungary and the Dutch-German-Luxembourg region. The average invasion velocity varied among countries, ranging from 30 km/year in England to 90 km/year in Hungary. The average invasion velocity gradually decreased over time in the long term, with declines being fastest in the Dutch-German-Luxembourg region, and much slower in England. Considering that NICS pose a substantial threat to aquatic biodiversity across Europe, our study highlights the utility and importance of collecting high resolution (i.e. annual) biomonitoring data using a sampling protocol that is able to estimate crayfish abundance, enabling a more profound understanding of NICS impacts on biodiversity.
Assuntos
Astacoidea , Ecossistema , Animais , Espécies Introduzidas , Biodiversidade , RiosRESUMO
Freshwater macroinvertebrates provide valuable indicators for biomonitoring ecosystem change in relation to natural and anthropogenic drivers. DNA metabarcoding is an efficient approach for estimating such indicators, but its results may differ from morphotaxonomic approaches traditionally used in biomonitoring. Here we test the hypothesis that despite differences in the number and identity of taxa recorded, both approaches may retrieve comparable patterns of community change, and detect similar ecological gradients influencing such changes. We compared results obtained with morphological identification at family level of macroinvertebrates collected at 80 streams under a Water Framework Directive biomonitoring program in Portugal, with results obtained with metabarcoding from the ethanol preserving the bulk samples, using either single (COI-M19BR2, 16S-Inse01, 18S-Euka02) or multiple markers. Metabarcoding recorded less families and different communities compared to morphotaxonomy, but community sensitivities to disturbance estimated with the IASPT index were more similar across approaches. Spatial variation in local community metrics and the factors influencing such variation were significantly correlated between morphotaxonomy and metabarcoding. After reducing random noise in the dissimilarity matrices, the spatial variation in community composition was also significantly correlated across methods. A dominant gradient of community change was consistently retrieved, and all methods identified a largely similar set of anthropogenic stressors strongly influencing such gradient. Overall, results confirm our initial hypothesis, suggesting that morphotaxonomy and metabarcoding can estimate consistent spatial patterns of community variation and their main drivers. These results are encouraging for macroinvertebrate biomonitoring using metabarcoding approaches, suggesting that they can be intercalibrated with morphotaxonomic approaches to recover equivalent spatial and temporal gradients of ecological change.
Assuntos
Código de Barras de DNA Taxonômico , Rios , Biodiversidade , DNA , Ecossistema , Monitoramento Ambiental , Água Doce , HumanosRESUMO
Vibrational spectroscopy has long been used in bacterial identification with different levels of taxonomic discrimination but its true potential for intra-species differentiation remains poorly explored. Herein, both transmission Fourier-transform infrared (FTIR) and attenuated total reflectance (ATR)-FTIR spectroscopy are used to analyse E. coli strains that differ solely in their porin expression profile. In this previously unreported approach, the applicability of both FTIR-spectroscopy techniques is compared with the same collection of unique strains. ATR-FTIR spectroscopy proved to reliably distinguish between several E. coli porin mutants with an accuracy not replicated by FTIR in transmission mode (using previously optimized procedures). Further studies should allow the identification of the individual contribution of the single porin channel to the overall bacterial infrared spectrum and of molecular predictive patterns of porin alterations.
Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/genética , Mutação , Porinas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Modelos Moleculares , Porinas/genética , Conformação ProteicaRESUMO
Solution behavior of lomefloxacin (lmx) complexes with copper(II) in the presence and absence of 1,10-phenanthroline (phen) was studied in aqueous solution, by potentiometry. The results obtained showed that under physiological conditions (micromolar concentration range and pH7.4) only copper(II):lmx:phen ternary complexes are stable. Hence, a novel copper(II) ternary complex of lomefloxacin with the nitrogen donor heterocyclic ligand phen was synthesized and characterized by means of UV-visible and IR spectroscopy, elemental analysis and X-ray crystallography. In the synthesized complex (1), [Cu(lmx)(phen)(NO3)]·5H2O, lmx acts as a bidentate ligand coordinating the metal cation, in its anionic form, through the carbonyl and carboxyl oxygens and phen coordinates through two N-atoms forming the equatorial plane of a distorted square-pyramidal geometry. The fifth ligand of the penta-coordinated Cu(II) center is occupied axially by an oxygen atom from the nitrate ion. Minimum inhibitory concentration (MIC) determinations of the complex and comparison with free lomefloxacin in various E. coli strains indicated that the Cu-complex is an antimicrobial which is as efficient as the free antibiotic but strongly suggest that the cell intake route of both species is different. Moreover, spectrophotometric stability studies suggest that the solution of the complex synthesized is considerably more photostable than the free fluoroquinolone supporting, therefore, the complex's suitability as a candidate for further biological testing in fluoroquinolone-resistant microorganisms with possible reduced side-effects.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Cobre/farmacologia , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Cristalografia por Raios X , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/síntese química , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Potenciometria/métodos , Soluções , Espectrofotometria Infravermelho , Espectrofotometria UltravioletaRESUMO
Microbial resistance to antibiotics is one of the biggest public health threats of the modern world. Antibiotic resistance is an area of much clinical relevance and therefore research that has the potential to identify agents that may circumvent it or treat resistant infections is paramount. Solution behavior of various fluoroquinolone (FQ) complexes with copper(II) in the presence and absence of 1,10-phenanthroline (phen) was studied in aqueous solution, by potentiometry and/or spectrophotometry, and are herein described. The results obtained showed that under physiological conditions (micromolar concentration range and pH7.4) only copper(II):FQ:phen ternary complexes are stable. Hence, these complexes were synthesised and characterised by means of UV-visible and IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. In these complexes, the FQ acts as a bidentate ligand that coordinates the metal cation through the carbonyl and carboxyl oxygen atoms and phen coordinates through two N-atoms forming the equatorial plane of a distorted square-pyramidal geometry. The fifth position of the penta-coordinated Cu(II) centre is generally occupied axially by an oxygen atom from a water molecule or from a nitrate ion. Minimum inhibitory concentration (MIC) determinations of the complexes and comparison with free FQ in various E. coli strains indicate that the Cu-complexes are as efficient antimicrobials as the free antibiotic. Moreover, results strongly suggest that the cell intake route of both species is different supporting, therefore, the complexes' suitability as candidates for further biological testing in FQ-resistant microorganisms.
Assuntos
Complexos de Coordenação/farmacologia , Cobre/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Fluoroquinolonas/química , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , FenantrolinasRESUMO
Antimicrobial peptides (AMPs) take part in the immune system by mounting a first line of defense against pathogens. Recurrent structural and functional aspects are observed among peptides from different sources, particularly the net cationicity and amphipathicity. However, the membrane seems to be the key determinant of their action, either as the main target of the peptide action or by forming a barrier that must be crossed by peptides to target core metabolic pathways. More importantly, the specificity exhibited by antimicrobial peptides relies on the different lipid composition between pathogen and host cells, likely contributing to their spectrum of activity. Several mechanisms of action have been reported, which may involve membrane permeabilization through the formation of pores, membrane thinning or micellization in a detergent-like way. AMPs may also target intracellular components, such as DNA, enzymes and even organelles. More recently, these peptides have been shown to produce membrane perturbation by formation of specific lipid-peptide domains, lateral phase segregation of zwitterionic from anionic phospholipids and even the formation of non-lamellar lipid phases. To countermeasure their activity, some pathogens were successful in developing effective mechanisms of resistance to decrease their susceptibility to AMPs. The functional and integral knowledge of such interactions and the clarification of the complex interplay between molecular determinants of peptides, the pathogen versus host cells dichotomy and the specific microenvironment in which all these elements convene will contribute to an understanding of some elusive aspects of their action and to rationally design novel therapeutic agents to overcome the current antibiotic resistance issue.
Assuntos
Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Fosfolipídeos/metabolismo , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Resistência Microbiana a Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de ProteínaRESUMO
Solution behavior of levofloxacin (lvx) complexes with copper(II) in the presence and absence of phen was studied in aqueous solution, by potentiometry. The results obtained show that under physiological conditions (micromolar concentration range and pH 7.4) only copper(II):lvx:phen ternary complexes are stable. Hence, a novel copper(II) ternary complex of fluoroquinolone levofloxacin with nitrogen donor heterocyclic ligand phen was synthesized and characterized by means of UV-Visible and IR spectroscopy, elemental analysis and X-Ray crystallography. In the synthesized complex (1), [Cu(lvx)(phen)(H(2)O)](NO(3)).2H(2)O, levofloxacin acts as a bidentate ligand coordinating to the metal, in its anionic form, through the carbonyl and carboxyl oxygens and phen coordinates through two N-atoms forming the equatorial plane of a distorted square-pyramidal geometry. The fifth ligand of the penta-coordinated Cu(II) centre is occupied axially by an oxygen atom from a water molecule. Minimum inhibitory concentration (MIC) determinations of the complex and comparison with free levofloxacin in various E. coli strains indicated that the Cu-complex is as efficient an antimicrobial as the free antibiotic (both in the case of the dissolved synthesized complex and the complex formed following stoichiometric mixture of the individual components in solution). Moreover, results strongly suggest that the cell intake route of both species is different supporting, therefore, the complex's suitability as a candidate for further biological testing in fluoroquinolone-resistant microorganisms.
Assuntos
Antibacterianos , Cobre , Escherichia coli/crescimento & desenvolvimento , Levofloxacino , Ofloxacino , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Cobre/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Ofloxacino/síntese química , Ofloxacino/química , Ofloxacino/farmacologiaRESUMO
Although many studies have pointed out the promising role of antimicrobial peptides (AMPs) as therapeutical agents, their translation into clinical research is being slow due to the limitations intrinsic to their peptide nature. A number of structural modifications to overcome this problem have been proposed, leading to enhanced AMP biological lifetimes and therapeutic index. In this work, the interaction between liposomes of different lipidic composition and a set of lysine N(ε)-trimethylated analogs of the cecropin A and melittin hybrid peptide, CA(1-7)M(2-9) [H-KWKLFKKIGAVLKVL-amide], was studied by differential scanning calorimetry (DSC) and fluorescence spectroscopy. The study was carried out using membrane models for mammalian erythrocytes (zwitterionic lipids) and for bacteria (mixture of zwitterionic and negatively charged lipids). The results show that trimethylated peptides interact strongly with negatively charged (bacterial cell model) but not with zwitterionic (erythrocyte model) liposomes. These results are in agreement with the reduction of cytotoxicity and ensuing improvement in therapeutic index vs parental CA(1-7)M(2-9) found in a related study. Moreover, the modified peptides act differently depending on the model membrane used, providing further evidence that the lipid membrane composition has important implications on AMP membrane activity.
Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Lipídeos/química , Lipossomos/química , Lisina/farmacologia , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Varredura Diferencial de Calorimetria , Lipossomos/metabolismo , Lisina/química , Metilação/efeitos dos fármacos , Dados de Sequência Molecular , TermodinâmicaRESUMO
Solution behaviour of enrofloxacin complexes with copper(II), nickel(II), cobalt(II) and zinc(II) in the presence and absence of 1, 10-phenanthroline was studied in aqueous solution, by potentiometry. The results obtained show that under physiological conditions (micromolar concentration range and pH 7.4) only copper(II) forms stable complexes. Binary copper(II)/enrofloxacin and ternary copper(II)/enrofloxacin/phenanthroline complexes were synthesised and characterized by elemental analysis, UV-visible spectroscopy and FTIR. The antimicrobial activity of these complexes and of copper(II)/enrofloxacin and copper(II)/enrofloxacin/phenanthroline solutions, prepared by mixing of the individual components in the same stoichiometric proportion and concentration range used for the synthesised complexes, was tested against two different Escherichia coli strains. Although, at a glance, the results point to a possible use of both complexes as metalloantibiotics, a detailed analysis shows that, at biological concentrations, the copper(II) binary complex does not exist and the antimicrobial activity observed is a consequence of its dissociation into free enrofloxacin. Consequently, only the ternary complex seems worth pursuing as a possible antimicrobial agent candidate. Moreover, as the biological studies showed, both the synthesised complexes and the solutions prepared by mixing the components exhibited the same behaviour. Hence, a new, faster and accurate methodology to screen metalloantibiotics prior to synthesis of the complexes is proposed.
Assuntos
Anti-Infecciosos , Cobre , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fluoroquinolonas , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Cobre/química , Cobre/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Enrofloxacina , Fluoroquinolonas/síntese química , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The thermal unfolding of plastocyanin from the mesophilic cyanobacterium Synechocystis is described herein, and the results are compared with those obtained for the homologous thermophilic protein from Phormidium laminosum. The thermal unfolding is irreversible under all the conditions that were investigated. Plastocyanin from the thermophilic organism, both in the native state and in the apoprotein form, proved to be more thermostable than its mesophilic counterpart under all experimental conditions. Synechocystis reduced plastocyanin has been shown to be more stable than the oxidized species, both with respect to the required temperature for protein unfolding and with respect to the kinetics of the process. This behavior contrasts with that observed for Phormidium plastocyanin, in which the oxidized form is the more stable one. The unfolding pH dependence and kinetic studies indicate that around physiological pH, the most kinetically stable form is also the one more resistant to temperature variations, suggesting a close compromise between function and stability. Molecular dynamics simulations suggest that Phormidium and Synechocystis plastocyanins follow different unfolding pathways that affect different protein areas and which could be responsible for the observed dissimilar thermal resistance.
Assuntos
Cianobactérias/metabolismo , Plastocianina/química , Dobramento de Proteína , Synechocystis/fisiologia , Temperatura , Apoproteínas/química , Apoproteínas/metabolismo , Cianobactérias/química , Cinética , Modelos Moleculares , Concentração Osmolar , Plastocianina/metabolismo , Synechocystis/enzimologiaRESUMO
A novel sulphate-reducing bacterium (Al1T) was recovered from a soured oil well in Purdu Bay, Alaska. Light and atomic force microscopy observations revealed that cells were Gram-negative, vibrio-shaped and motile by means of a single polar flagellum. The carbon and energy sources used by the isolate and the salinity, temperature and pH ranges facilitating its growth proved to be typical of a partial lactate-oxidizing, moderately halophilic, mesophilic, sulphate-reducing bacterium. Analysis of the fatty acid profile revealed that C(18 : 0), isoC(15 : 0) and isoC(17 : 1)omega7c were the predominant species. Fatty acid profile and complete 16S rRNA gene sequencing demonstrated the similarity between strain Al1T and members of the genus Desulfovibrio. The position of strain Al1T within the phylogenetic tree indicated that it clustered closely with Desulfovibrio vietnamensis DSM 10520T (98.9 % sequence similarity), a strain recovered from a similar habitat. However, whole-cell protein profiles, Fourier-transform infrared studies and DNA-DNA hybridization demonstrated that, in spite of the high level of 16S rRNA gene sequence similarity, there is sufficient dissimilarity at the DNA sequence level between D. vietnamensis DSM 10520T and strain Al1T (10.2 % similarity) to propose that strain Al1T belongs to a separate species within the genus Desulfovibrio. Based on the results obtained, the name Desulfovibrio alaskensis sp. nov. is therefore proposed, with Al1T (= NCIMB 13491T = DSM 16109T) as the type strain.
Assuntos
Desulfovibrio/classificação , Desulfovibrio/metabolismo , Petróleo/microbiologia , Sulfatos/metabolismo , Alaska , Proteínas de Bactérias/análise , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Desulfovibrio/citologia , Desulfovibrio/isolamento & purificação , Desulfovibrio/fisiologia , Ácidos Graxos/análise , Fermentação , Flagelos , Genes de RNAr , Inibidores do Crescimento/farmacologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Movimento , Hibridização de Ácido Nucleico , Oxirredução , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia , Microbiologia do Solo , TemperaturaRESUMO
The thermal unfolding of the plastocyanin from Phormidium laminosum, a thermophilic cyanobacterium, is herein described. The main objective of this work is to identify structural factors responsible for the higher stability observed in proteins from thermophilic organisms. With the aid of fluorescence spectroscopy, EPR, and NMR, the factors influencing the unfolding process of the protein were investigated, and procedures for its study have been standardized. The different spectroscopic techniques used provided consistent results showing that the thermal unfolding of plastocyanin is irreversible under all the conditions investigated and that this irreversibility does not appear to be related to the presence of oxygen. The oxidized plastocyanin species has proven to be more stable than the reduced one, with respect to both the required temperature for protein unfolding (up to a 9 degrees C difference between the two forms) and the kinetics of the process. The behavior of this plastocyanin contrasts with that of other cupredoxins whose unfolding had previously been studied. The unfolding pH dependence and kinetic studies indicate a process with a tight control around the physiological pH in which plastocyanin plays its redox role and the protein's isoelectric point (5.2), suggesting a close compromise between function and stability.
Assuntos
Cianobactérias/química , Temperatura Alta , Plastocianina/química , Dobramento de Proteína , Aerobiose , Anaerobiose , Cobre/metabolismo , Cianobactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Oxirredução , Plastocianina/metabolismo , Espectrometria de Fluorescência , TermodinâmicaRESUMO
We report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126+/-2 kDa composed of two subunits, alpha=93+/-3 kDa and beta=32+/-2 kDa, which contains 6+/-1 Fe/molecule, 0.4+/-0.1 Mo/molecule, 0.3+/-0.1 W/molecule, and 1.3+/-0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5-40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d(1) configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.