Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Virol ; 97(11): e0091023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37921471

RESUMO

IMPORTANCE: The main limitation of oncolytic vectors is neutralization by blood components, which prevents intratumoral administration to patients. Enadenotucirev, a chimeric HAdV-11p/HAdV-3 adenovirus identified by bio-selection, is a low seroprevalence vector active against a broad range of human carcinoma cell lines. At this stage, there's still some uncertainty about tropism and primary receptor utilization by HAdV-11. However, this information is very important, as it has a direct influence on the effectiveness of HAdV-11-based vectors. The aim of this work is to determine which of the two receptors, DSG2 and CD46, is involved in the attachment of the virus to the host, and what role they play in the early stages of infection.


Assuntos
Adenovírus Humanos , Desmogleína 2 , Proteína Cofatora de Membrana , Receptores Virais , Humanos , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Linhagem Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
2.
Mol Microbiol ; 118(1-2): 16-29, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35615908

RESUMO

The proteasome system allows the elimination of functional or structurally impaired proteins. This includes the degradation of nascent peptides. In Archaea, how the proteasome complex interacts with the translational machinery remains to be described. Here, we characterized a small orphan protein, Q9UZY3 (UniProt ID), conserved in Thermococcales. The protein was identified in native pull-down experiments using the proteasome regulatory complex (proteasome-activating nucleotidase [PAN]) as bait. X-ray crystallography and small-angle X-ray scattering experiments revealed that the protein is monomeric and adopts a ß-barrel core structure with an oligonucleotide/oligosaccharide-binding (OB)-fold, typically found in translation elongation factors. Mobility shift experiment showed that Q9UZY3 displays transfer ribonucleic acid (tRNA)-binding properties. Pull-downs, co-immunoprecipitation and isothermal titration calorimetry (ITC) studies revealed that Q9UZY3 interacts in vitro with PAN. Native pull-downs and proteomic analysis using different versions of Q9UZY3 showed that the protein interacts with the assembled PAN-20S proteasome machinery in Pyrococcus abyssi (Pa) cellular extracts. The protein was therefore named Pbp11, for Proteasome-Binding Protein of 11 kDa. Interestingly, the interaction network of Pbp11 also includes ribosomal proteins, tRNA-processing enzymes and exosome subunits dependent on Pbp11's N-terminal domain that was found to be essential for tRNA binding. Together these data suggest that Pbp11 participates in an interface between the proteasome and the translational machinery.


Assuntos
Proteínas Arqueais , Complexo de Endopeptidases do Proteassoma , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Transporte , Cristalografia por Raios X , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , RNA de Transferência
3.
PLoS Pathog ; 17(5): e1009576, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015061

RESUMO

The efficient spread of SARS-CoV-2 resulted in a unique pandemic in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLRS) of antigen-presenting cells, widely present in respiratory mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas. Using pseudovirus and cells derived from monocytes or T-lymphocytes, we demonstrate that while virus capture by the CLRs examined does not allow direct cell infection, DC/L-SIGN, among these receptors, promote virus transfer to permissive ACE2+ Vero E6 cells. A glycomimetic compound designed against DC-SIGN, enable inhibition of this process. These data have been then confirmed using authentic SARS-CoV-2 virus and human respiratory cell lines. Thus, we described a mechanism potentiating viral spreading of infection.


Assuntos
COVID-19/transmissão , Lectinas Tipo C/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Antígenos CD/metabolismo , COVID-19/prevenção & controle , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Chlorocebus aethiops , Humanos , Células Jurkat , Pulmão/metabolismo , Lectinas de Ligação a Manose/metabolismo , Manosídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Mucosa Respiratória/metabolismo , Células Vero
4.
Mol Ther ; 30(5): 1913-1925, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151843

RESUMO

Virus-like particles (VLPs) are highly suited platforms for protein-based vaccines. In the present work, we adapted a previously designed non-infectious adenovirus-inspired 60-mer dodecahedric VLP (ADDomer) to display a multimeric array of large antigens through a SpyTag/SpyCatcher system. To validate the platform as a potential COVID-19 vaccine approach, we decorated the newly designed VLP with the glycosylated receptor binding domain (RBD) of SARS-CoV-2. Cryoelectron microscopy structure revealed that up to 60 copies of this antigenic domain could be bound on a single ADDomer particle, with the symmetrical arrangements of a dodecahedron. Mouse immunization with the RBD decorated VLPs already showed a significant specific humoral response following prime vaccination, greatly reinforced by a single boost. Neutralization assays with SARS-CoV-2 spike pseudo-typed virus demonstrated the elicitation of strong neutralization titers, superior to those of COVID-19 convalescent patients. Notably, the presence of pre-existing immunity against the adenoviral-derived particles did not hamper the immune response against the antigen displayed on its surface. This plug and play vaccine platform represents a promising new highly versatile tool to combat emergent pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Adenoviridae/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Microscopia Crioeletrônica , Humanos , Camundongos , Vacinação
5.
J Struct Biol ; 214(1): 107813, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34808342

RESUMO

Components of specialized secretion systems, which span the inner and outer membranes in Gram-negative bacteria, include ring-forming proteins whose oligomerization was proposed to be promoted by domains called RBM for "Ring-Building Motifs". During spore formation in Gram-positive bacteria, a transport system called the SpoIIIA-SpoIIQ complex also assembles in the double membrane that surrounds the forespore following its endocytosis by the mother cell. The presence of RBM domains in some of the SpoIIIA proteins led to the hypothesis that they would assemble into rings connecting the two membranes and form a conduit between the mother cell and forespore. Among them, SpoIIIAG forms homo-oligomeric rings in vitro but the oligomerization of other RBM-containing SpoIIIA proteins, including SpoIIIAH, remains to be demonstrated. In this work, we identified RBM domains in the YhcN/YlaJ family of proteins that are not related to the SpoIIIA-SpoIIQ complex. We solved the crystal structure of YhcN from Bacillus subtilis, which confirmed the presence of a RBM fold, flanked by additional secondary structures. As the protein did not show any oligomerization ability in vitro, we investigated the structural determinants of ring formation in SpoIIIAG, SpoIIIAH and YhcN. We showed that in vitro, the conserved core of RBM domains alone is not sufficient for oligomerization while the ß-barrel forming region in SpoIIIAG forms rings on its own. This work suggests that some RBMs might indeed participate in the assembly of homomeric rings but others might have evolved toward other functions.


Assuntos
Proteínas de Bactérias , Esporos Bacterianos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Estrutura Secundária de Proteína , Esporos Bacterianos/metabolismo
6.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613664

RESUMO

Silica (either crystalline or amorphous) is widely used for different applications and its toxicological assessment depends on its characteristics and intended use. As sustained inflammation induced by crystalline silica is at the root of silicosis, investigating the inflammatory effects induced by amorphous silicas and their persistence is needed. For the development of new grades of synthetic amorphous silicas, it is also desirable to be able to understand better the factors underlying potential adverse effects. Therefore, we used an optimized in vitro macrophage system to investigate the effects of amorphous silicas, and their persistence. By using different amorphous silicas, we demonstrated that the main driver for the adverse effects is a low size of the overall particle/agglomerate; the second driver being a low size of the primary particle. We also demonstrated that the effects were transient. By using silicon dosage in cells, we showed that the transient effects are coupled with a decrease of intracellular silicon levels over time after exposure. To further investigate this phenomenon, a mild enzymatic cell lysis allowed us to show that amorphous silicas are degraded in macrophages over time, explaining the decrease in silicon content and thus the transiency of the effects of amorphous silicas on macrophages.


Assuntos
Dióxido de Silício , Silicose , Humanos , Silício , Macrófagos
7.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077319

RESUMO

RNA polymerases (RNAPs) are found in all living organisms. In the chloroplasts, the plastid-encoded RNA polymerase (PEP) is a prokaryotic-type multimeric RNAP involved in the selective transcription of the plastid genome. One of its active states requires the assembly of nuclear-encoded PEP-Associated Proteins (PAPs) on the catalytic core, producing a complex of more than 900 kDa, regarded as essential for chloroplast biogenesis. In this study, sequence alignments of the catalytic core subunits across various chloroplasts of the green lineage and prokaryotes combined with structural data show that variations are observed at the surface of the core, whereas internal amino acids associated with the catalytic activity are conserved. A purification procedure compatible with a structural analysis was used to enrich the native PEP from Sinapis alba chloroplasts. A mass spectrometry (MS)-based proteomic analysis revealed the core components, the PAPs and additional proteins, such as FLN2 and pTAC18. MS coupled with crosslinking (XL-MS) provided the initial structural information in the form of protein clusters, highlighting the relative position of some subunits with the surfaces of their interactions. Using negative stain electron microscopy, the PEP three-dimensional envelope was calculated. Particles classification shows that the protrusions are very well-conserved, offering a framework for the future positioning of all the PAPs. Overall, the results show that PEP-associated proteins are firmly and specifically associated with the catalytic core, giving to the plastid transcriptional complex a singular structure compared to other RNAPs.


Assuntos
Proteínas de Arabidopsis , Sinapis , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Plastídeos/genética , Plastídeos/metabolismo , Proteômica , Sinapis/metabolismo
8.
PLoS Pathog ; 15(5): e1007731, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31083688

RESUMO

The type II secretion system (T2SS) is a cell envelope-spanning macromolecular complex that is prevalent in Gram-negative bacterial species. It serves as the predominant virulence mechanism of many bacteria including those of the emerging human pathogens Vibrio vulnificus and Aeromonas hydrophila. The system is composed of a core set of highly conserved proteins that assemble an inner membrane platform, a periplasmic pseudopilus and an outer membrane complex termed the secretin. Localization and assembly of secretins in the outer membrane requires recognition of secretin monomers by two different partner systems: an inner membrane accessory complex or a highly sequence-diverse outer membrane lipoprotein, termed the pilotin. In this study, we addressed the question of differential secretin assembly mechanisms by using cryo-electron microscopy to determine the structures of the secretins from A. hydrophila (pilotin-independent ExeD) and V. vulnificus (pilotin-dependent EpsD). These structures, at approximately 3.5 Å resolution, reveal pentadecameric stoichiometries and C-terminal regions that carry a signature motif in the case of a pilotin-dependent assembly mechanism. We solved the crystal structure of the V. vulnificus EpsS pilotin and confirmed the importance of the signature motif for pilotin-dependent secretin assembly by performing modelling with the C-terminus of EpsD. We also show that secretin assembly is essential for membrane integrity and toxin secretion in V. vulnificus and establish that EpsD requires the coordinated activity of both the accessory complex EpsAB and the pilotin EpsS for full assembly and T2SS function. In contrast, mutation of the region of the S-domain that is normally the site of pilotin interactions has little effect on assembly or function of the ExeD secretin. Since secretins are essential outer membrane channels present in a variety of secretion systems, these results provide a structural and functional basis for understanding the key assembly steps for different members of this vast pore-forming family of proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Secretina/química , Sistemas de Secreção Tipo II/química , Vibrio vulnificus/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Lipoproteínas/química , Modelos Moleculares , Conformação Proteica , Secretina/metabolismo , Homologia de Sequência , Sistemas de Secreção Tipo II/metabolismo , Vibrio vulnificus/crescimento & desenvolvimento
9.
Proc Natl Acad Sci U S A ; 115(10): E2220-E2228, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476011

RESUMO

The gram-negative pathogen Providencia stuartii forms floating communities within which adjacent cells are in apparent contact, before depositing as canonical surface-attached biofilms. Because porins are the most abundant proteins in the outer membrane of gram-negative bacteria, we hypothesized that they could be involved in cell-to-cell contact and undertook a structure-function relationship study on the two porins of P. stuartii, Omp-Pst1 and Omp-Pst2. Our crystal structures reveal that these porins can self-associate through their extracellular loops, forming dimers of trimers (DOTs) that could enable cell-to-cell contact within floating communities. Support for this hypothesis was obtained by studying the porin-dependent aggregation of liposomes and model cells. The observation that facing channels are open in the two porin structures suggests that DOTs could not only promote cell-to-cell contact but also contribute to intercellular communication.


Assuntos
Biofilmes , Porinas/metabolismo , Providencia/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalografia por Raios X , Dimerização , Porinas/química , Porinas/genética , Providencia/química , Providencia/genética
10.
Amino Acids ; 50(6): 711-721, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626301

RESUMO

Oropouche virus (OROV) is the unique known human pathogen belonging to serogroup Simbu of Orthobunyavirus genus and Bunyaviridae family. OROV is transmitted by wild mosquitoes species to sloths, rodents, monkeys and birds in sylvatic environment, and by midges (Culicoides paraensis and Culex quinquefasciatus) to man causing explosive outbreaks in urban locations. OROV infection causes dengue fever-like symptoms and in few cases, can cause clinical symptoms of aseptic meningitis. OROV contains a tripartite negative RNA genome encapsidated by the viral nucleocapsid protein (NP), which is essential for viral genome encapsidation, transcription and replication. Here, we reported the first study on the structural properties of a recombinant NP from human pathogen Oropouche virus (OROV-rNP). OROV-rNP was successfully expressed in E. coli in soluble form and purified using affinity and size-exclusion chromatographies. Purified OROV-rNP was analyzed using a series of biophysical tools and molecular modeling. The results showed that OROV-rNP formed stable oligomers in solution coupled with endogenous E. coli nucleic acids (RNA) of different sizes. Finally, electron microscopy revealed a total of eleven OROV-rNP oligomer classes with tetramers (42%) and pentamers (43%) the two main populations and minor amounts of other bigger oligomeric states, such as hexamers, heptamers or octamers. The different RNA sizes and nucleotide composition may explain the diversity of oligomer classes observed. Besides, structural differences among bunyaviruses NP can be used to help in the development of tools for specific diagnosis and epidemiological studies of this group of viruses.


Assuntos
Genoma Viral , Nucleoproteínas/química , Multimerização Proteica , RNA Viral/química , Vírus Simbu/química , Proteínas Virais/química , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Vírus Simbu/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
J Biol Chem ; 290(37): 22581-92, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26198632

RESUMO

Pili are fibrous appendages expressed on the surface of a vast number of bacterial species, and their role in surface adhesion is important for processes such as infection, colonization, andbiofilm formation. The human pathogen Streptococcus pneumoniae expresses two different types of pili, PI-1 and PI-2, both of which require the concerted action of structural proteins and sortases for their polymerization. The type PI-1 streptococcal pilus is a complex, well studied structure, but the PI-2 type, present in a number of invasive pneumococcal serotypes, has to date remained less well understood. The PI-2 pilus consists of repeated units of a single protein, PitB, whose covalent association is catalyzed by cognate sortase SrtG-1 and partner protein SipA. Here we report the high resolution crystal structures of PitB and SrtG1 and use molecular modeling to visualize a "trapped" 1:1 complex between the two molecules. X-ray crystallography and electron microscopy reveal that the pneumococcal PI-2 backbone fiber is formed by PitB monomers associated in head-to-tail fashion and that short, flexible fibers can be formed even in the absence of coadjuvant proteins. These observations, obtained with a simple pilus biosynthetic system, are likely to be applicable to other fiber formation processes in a variety of Gram-positive organisms.


Assuntos
Proteínas de Bactérias/química , Fímbrias Bacterianas/química , Streptococcus pneumoniae/química , Cristalografia por Raios X , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
12.
Mol Microbiol ; 96(2): 419-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25614137

RESUMO

The export of bacterial toxins across the bacterial envelope requires the assembly of complex, membrane-embedded protein architectures. Pseudomonas aeruginosa employs type III secretion (T3S) injectisome to translocate exotoxins directly into the cytoplasm of a target eukaryotic cell. This multi-protein channel crosses two bacterial membranes and extends further as a needle through which the proteins travel. We show in this work that PscI, proposed to form the T3S system (T3SS) inner rod, possesses intrinsic properties to polymerize into flexible and regularly twisted fibrils and activates IL-1ß production in mouse bone marrow macrophages in vitro. We also found that point mutations within C-terminal amphipathic helix of PscI alter needle assembly in vitro and T3SS function in cell infection assays, suggesting that this region is essential for an efficient needle assembly. The overexpression of PscF partially compensates for the absence of the inner rod in PscI-deficient mutant by forming a secretion-proficient injectisome. All together, we propose that the polymerized PscI in P. aeruginosa optimizes the injectisome function by anchoring the needle within the envelope-embedded complex of the T3S secretome and - contrary to its counterpart in Salmonella - is not involved in substrate switching.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Polimerização , Transporte Proteico , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo III/química , Sistemas de Secreção Tipo III/genética
13.
J Appl Crystallogr ; 57(Pt 2): 602-605, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596739

RESUMO

In addressing the challenges faced by laboratories and universities with limited (or no) cryo-electron microscopy (cryo-EM) infrastructure, the ESRF, in collaboration with the Grenoble Institute for Structural Biology (IBS), has implemented the cryo-EM Solution-to-Structure (SOS) pipeline. This inclusive process, spanning grid preparation to high-resolution data collection, covers single-particle analysis and cryo-electron tomography (cryo-ET). Accessible through a rolling access route, proposals undergo scientific merit and technical feasibility evaluations. Stringent feasibility criteria demand robust evidence of sample homogeneity. Two distinct entry points are offered: users can either submit purified protein samples for comprehensive processing or initiate the pipeline with already vitrified cryo-EM grids. The SOS pipeline integrates negative stain imaging (exclusive to protein samples) as a first quality step, followed by cryo-EM grid preparation, grid screening and preliminary data collection for single-particle analysis, or only the first two steps for cryo-ET. In both cases, if the screening steps are successfully completed, high-resolution data collection will be carried out using a Titan Krios microscope equipped with a latest-generation direct electron counting detector coupled to an energy filter. The SOS pipeline thus emerges as a comprehensive and efficient solution, further democratizing access to cryo-EM research.

14.
Biochem J ; 444(1): 97-104, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22360742

RESUMO

The ability of the small Hsp (heat-shock protein) Lo18 from Oenococcus oeni to modulate the membrane fluidity of liposomes or to reduce the thermal aggregation of proteins was studied as a function of the pH in the range 5-9. We have determined by size-exclusion chromatography and analytical ultracentrifugation that Lo18 assembles essentially as a 16-mer at acidic pH. Its quaternary structure evolves to a mixture of lower molecular mass oligomers probably in dynamic equilibrium when the pH increases. The best Lo18 activities are observed at pH 7 when the particle distribution contains a major proportion of dodecamers. At basic pH, particles corresponding to a dimer prevail and are thought to be the building blocks leading to oligomerization of Lo18. At acidic pH, the dimers are organized in a double-ring of stacked octamers to form the 16-mer as shown by the low-resolution structure determined by electron microscopy. Experiments performed with a modified protein (A123S) shown to preferentially form dimers confirm these results. The α-crystallin domain of Methanococcus jannaschii Hsp16.5, taken as a model of the Lo18 counterpart, fits with the electron microscopy envelope of Lo18.


Assuntos
Proteínas de Choque Térmico/química , Fluidez de Membrana , Oenococcus/metabolismo , Proteínas Arqueais/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Lipossomos/química , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , alfa-Cristalinas/química
15.
STAR Protoc ; 4(2): 102265, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37200196

RESUMO

Stiffness plays a central action in plant cell extension. Here, we present a protocol to detect changes in stiffness on the external epidermal cell wall of living plant roots using atomic force microscopy (AFM). We provide generalized instructions for collecting force-distance curves and analysis of stiffness using contact-based mechanical model. With this protocol, and some initial training in AFM, a user is able to perform indentation experiments on 4- and 5-day-old Arabidopsis thaliana and determine stiffness properties. For complete details on the use and execution of this protocol, please refer to Godon et al.1.

16.
Intervirology ; 55(5): 349-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22057164

RESUMO

OBJECTIVE: In order to gain further insight into the function of the enteric adenovirus short fiber (SF), we have constructed a recombinant dodecahedron containing the SF protein of HAdV-41 and the HAdV-3 penton base. METHODS: Recombinant baculoviruses expressing the HAdV-41 SF protein and HAdV-3 penton base were cloned and amplified in Sf9 insect cells. Recombinant dodecahedra were expressed by coinfection of High Five™ cells with both baculoviruses, 72 h post-infection. Cell lysate was centrifuged on sucrose density gradient and the purified recombinant dodecahedra were recovered. RESULTS: Analysis by negative staining electron microscopy demonstrated that chimeric dodecahedra made of the HAdV-3 penton base and decorated with the HAdV-41 SF were successfully generated. Next, recombinant dodecahedra were digested with pepsin and analyzed by Western blot. A 'site-specific' proteolysis of the HAdV-41 SF was observed, while the HAdV-3 penton base core was completely digested. CONCLUSION: These results show that, in vitro, the HAdV-41 SF likely undergoes proteolysis in the gastrointestinal tract, its natural environment, which may facilitate the recognition of receptors in intestinal cells. The results obtained in the present study may be the basis for the development of gene therapy vectors towards the intestinal epithelium, as well as orally administered vaccine vectors, but also for the HAdV-41 SF partner identification.


Assuntos
Adenovírus Humanos/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/ultraestrutura , Substâncias Macromoleculares/ultraestrutura , Virossomos/genética , Virossomos/ultraestrutura , Animais , Baculoviridae/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Clonagem Molecular , Vetores Genéticos , Insetos , Substâncias Macromoleculares/metabolismo , Microscopia Eletrônica , Pepsina A , Multimerização Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Virossomos/metabolismo
17.
FEBS Lett ; 596(7): 958-969, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238034

RESUMO

The Cdv proteins constitute the cell division system of the Crenarchaea, a machinery closely related to the ESCRT system of eukaryotes. Using a combination of TEM imaging and biochemical assays, we here present an in vitro study of Metallosphaera sedula CdvB1, the Cdv protein that is believed to play a major role in the constricting ring that drives cell division in the Crenarchaea. We show that CdvB1 self-assembles into filaments that are depolymerized by the Vps4-homolog ATPase CdvC. Furthermore, we find that CdvB1 binds to negatively charged lipid membranes and can be detached from the membrane by the action of CdvC. Our findings provide novel insight into one of the main components of the archaeal cell division machinery.


Assuntos
Archaea , Proteínas Arqueais , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Divisão Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Polímeros
18.
Front Immunol ; 13: 865239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928812

RESUMO

Pigments are among the oldest nanoparticulate products known to mankind, and their use in tattoos is also very old. Nowadays, 25% of American people aged 18 to 50 are tattooed, which poses the question of the delayed effects of tattoos. In this article, we investigated three cobalt [Pigment Violet 14 (purple color)] or cobalt alloy pigments [Pigment Blue 28 (blue color), Pigment Green 14 (green color)], and one zinc pigment [Pigment White 4 (white color)] which constitute a wide range of colors found in tattoos. These pigments contain microparticles and a significant proportion of submicroparticles or nanoparticles (in either aggregate or free form). Because of the key role of macrophages in the scavenging of particulate materials, we tested the effects of cobalt- and zinc-based pigments on the J774A.1 macrophage cell line. In order to detect delayed effects, we compared two exposure schemes: acute exposure for 24 hours and an exposure for 24 hours followed by a 3-day post-exposure recovery period. The conjunction of these two schemes allowed for the investigation of the delayed or sustained effects of pigments. All pigments induced functional effects on macrophages, most of which were pigment-dependent. For example, Pigment Green 19, Pigment Blue 28, and Pigment White 4 showed a delayed alteration of the phagocytic capacity of cells. Moreover, all the pigments tested induced a slight but significant increase in tumor necrosis factor secretion. This effect, however, was transitory. Conversely, only Pigment Blue 28 induced both a short and sustained increase in interleukin 6 secretion. Results showed that in response to bacterial stimuli (LPS), the secretion of tumor necrosis factor and interleukin 6 declined after exposure to pigments followed by a recovery period. For chemoattractant cytokines (MCP-1 or MIP-1α), delayed effects were observed with a secretion decreased in presence of Pigment Blue 28 and Pigment violet 14, both with or without LPS stimuli. The pigments also induced persisting changes in some important macrophage membrane markers such as CD11b, an integrin contributing to cell adhesion and immunological tolerance. In conclusion, the pigments induced functional disorders in macrophages, which, in some cases, persist long after exposure, even at non-toxic doses.


Assuntos
Cobalto , Interleucina-6 , Cobalto/toxicidade , Humanos , Lipopolissacarídeos , Macrófagos , Fator de Necrose Tumoral alfa , Zinco
19.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35564134

RESUMO

Synthetic amorphous silica (SAS) is a nanomaterial used in a wide variety of applications, including the use as a food additive. Two types of SAS are commonly employed as a powder additive, precipitated silica and fumed silica. Numerous studies have investigated the effects of synthetic amorphous silica on mammalian cells. However, most of them have used an exposure scheme based on a single dose of SAS. In this study, we have used instead a repeated 10-day exposure scheme in an effort to better simulate the occupational exposure encountered in daily life by consumers and workers. As a biological model, we have used the murine macrophage cell line J774A.1, as macrophages are very important innate immune cells in the response to particulate materials. In order to obtain a better appraisal of the macrophage responses to this repeated exposure to SAS, we have used proteomics as a wide-scale approach. Furthermore, some of the biological pathways detected as modulated by the exposure to SAS by the proteomic experiments have been validated through targeted experiments. Overall, proteomics showed that precipitated SAS induced a more important macrophage response than fumed SAS at equal dose. Nevertheless, validation experiments showed that most of the responses detected by proteomics are indeed adaptive, as the cellular homeostasis appeared to be maintained at the end of the exposure. For example, the intracellular glutathione levels or the mitochondrial transmembrane potential at the end of the 10 days exposure were similar for SAS-exposed cells and for unexposed cells. Similarly, no gross lysosomal damage was observed after repeated exposure to SAS. Nevertheless, important functions of macrophages such as phagocytosis, TNFα, and interleukin-6 secretion were up-modulated after exposure, as was the expression of important membrane proteins such as the scavenger receptors, MHC-II, or the MAC-1 receptor. These results suggest that repeated exposure to low doses of SAS slightly modulates the immune functions of macrophages, which may alter the homeostasis of the immune system.

20.
Nat Commun ; 13(1): 2363, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501361

RESUMO

Chaperones, as modulators of protein conformational states, are key cellular actors to prevent the accumulation of fibrillar aggregates. Here, we integrated kinetic investigations with structural studies to elucidate how the ubiquitous co-chaperonin prefoldin inhibits diabetes associated islet amyloid polypeptide (IAPP) fibril formation. We demonstrated that both human and archaeal prefoldin interfere similarly with the IAPP fibril elongation and secondary nucleation pathways. Using archaeal prefoldin model, we combined nuclear magnetic resonance spectroscopy with electron microscopy to establish that the inhibition of fibril formation is mediated by the binding of prefoldin's coiled-coil helices to the flexible IAPP N-terminal segment accessible on the fibril surface and fibril ends. Atomic force microscopy demonstrates that binding of prefoldin to IAPP leads to the formation of lower amounts of aggregates, composed of shorter fibrils, clustered together. Linking structural models with observed fibrillation inhibition processes opens perspectives for understanding the interference between natural chaperones and formation of disease-associated amyloids.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Chaperonas Moleculares , Amiloide/metabolismo , Chaperoninas , Humanos , Chaperonas Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA