Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biochemistry ; 63(11): 1395-1411, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38747545

RESUMO

Nitric oxide synthase (NOS) in mammals is a family of multidomain proteins in which interdomain electron transfer (IET) is controlled by domain-domain interactions. Calmodulin (CaM) binds to the canonical CaM-binding site in the linker region between the FMN and heme domains of NOS and allows tethered FMN domain motions, enabling an intersubunit FMN-heme IET in the output state for NO production. Our previous cross-linking mass spectrometric (XL MS) results demonstrated site-specific protein dynamics in the CaM-responsive regions of rat neuronal NOS (nNOS) reductase construct, a monomeric protein [Jiang et al., Biochemistry, 2023, 62, 2232-2237]. In this work, we have extended our combined approach of XL MS structural mapping and AlphaFold structural prediction to examine the homodimeric nNOS oxygenase/FMN (oxyFMN) construct, an established model of the NOS output state. We employed parallel reaction monitoring (PRM) based quantitative XL MS (qXL MS) to assess the CaM-induced changes in interdomain dynamics and interactions. Intersubunit cross-links were identified by mapping the cross-links onto top AlphaFold structural models, which was complemented by comparing their relative abundances in the cross-linked dimeric and monomeric bands. Furthermore, contrasting the CaM-free and CaM-bound nNOS samples shows that CaM enables the formation of the intersubunit FMN-heme docking complex and that CaM binding induces extensive, allosteric conformational changes across the NOS regions. Moreover, the observed cross-links sites specifically respond to changes in ionic strength. This indicates that interdomain salt bridges are responsible for stabilizing and orienting the output state for efficient FMN-heme IET. Taken together, our targeted qXL MS results have revealed that CaM and ionic strength modulate specific dynamic changes in the CaM/FMN/heme complexes, particularly in the context of intersubunit interdomain FMN-heme interactions.


Assuntos
Calmodulina , Mononucleotídeo de Flavina , Heme , Espectrometria de Massas , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo I/química , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , Heme/metabolismo , Heme/química , Animais , Ratos , Calmodulina/metabolismo , Calmodulina/química , Espectrometria de Massas/métodos , Domínios Proteicos , Modelos Moleculares , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Ligação Proteica
2.
J Biol Inorg Chem ; 29(2): 243-250, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580821

RESUMO

Calmodulin (CaM) binds to a linker between the oxygenase and reductase domains of nitric oxide synthase (NOS) to regulate the functional conformational dynamics. Specific residues on the interdomain interface guide the domain-domain docking to facilitate the electron transfer in NOS. Notably, the docking interface between CaM and the heme-containing oxygenase domain of NOS is isoform specific, which is only beginning to be investigated. Toward advancing understanding of the distinct CaM-NOS docking interactions by infrared spectroscopy, we introduced a cyano-group as frequency-resolved vibrational probe into CaM individually and when associated with full-length and a bi-domain oxygenase/FMN construct of the inducible NOS isoform (iNOS). Site-specific, selective labeling with p-cyano-L-phenylalanine (CNF) by amber suppression of CaM bound to the iNOS has been accomplished by protein coexpression due to the instability of recombinant iNOS protein alone. We introduced CNF at residue 108, which is at the putative CaM-heme (NOS) docking interface. CNF was also introduced at residue 29, which is distant from the docking interface. FT IR data show that the 108 site is sensitive to CaM-NOS complex formation, while insensitivity to its association with the iNOS protein or peptide was observed for the 29 site. Moreover, narrowing of the IR bands at residue 108 suggests the C≡N probe experiences a more limited distribution of environments, indicating side chain restriction apparent for the complex with iNOS. This initial work sets the stage for residue-specific characterizations of structural dynamics of the docked states of NOS proteins.


Assuntos
Calmodulina , Espectrofotometria Infravermelho , Calmodulina/química , Calmodulina/metabolismo , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/metabolismo , Ligação Proteica , Simulação de Acoplamento Molecular
3.
Part Fibre Toxicol ; 21(1): 27, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797836

RESUMO

BACKGROUND: Rural regions of the western United States have experienced a noticeable surge in both the frequency and severity of acute wildfire events, which brings significant challenges to both public safety and environmental conservation efforts, with impacts felt globally. Identifying factors contributing to immune dysfunction, including endocrinological phenotypes, is essential to understanding how hormones may influence toxicological susceptibility. METHODS: This exploratory study utilized male and female C57BL/6 mice as in vivo models to investigate distinct responses to acute woodsmoke (WS) exposure with a focus on sex-based differences. In a second set of investigations, two groups were established within the female mouse cohort. In one group, mice experienced ovariectomy (OVX) to simulate an ovarian hormone-deficient state similar to surgical menopause, while the other group received Sham surgery as controls, to investigate the mechanistic role of ovarian hormone presence in driving immune dysregulation following acute WS exposure. Each experimental cohort followed a consecutive 2-day protocol with daily 4-h exposure intervals under two conditions: control HEPA-filtered air (FA) and acute WS to simulate an acute wildfire episode. RESULTS: Metals analysis of WS particulate matter (PM) revealed significantly increased levels of 63Cu, 182W, 208Pb, and 238U, compared to filtered air (FA) controls, providing insights into the specific metal components most impacted by the changing dynamics of wildfire occurrences in the region. Male and female mice exhibited diverse patterns in lung mRNA cytokine expression following WS exposure, with males showing downregulation and females displaying upregulation, notably for IL-1ß, TNF-α, CXCL-1, CCL-5, TGF-ß, and IL-6. After acute WS exposure, there were notable differences in the responses of macrophages, neutrophils, and bronchoalveolar lavage (BAL) cytokines IL-10, IL-6, IL-1ß, and TNF-α. Significant diverse alterations were observed in BAL cytokines, specifically IL-1ß, IL-10, IL-6, and TNF-α, as well as in the populations of immune cells, such as macrophages and polymorphonuclear leukocytes, in both Sham and OVX mice, following acute WS exposure. These findings elucidated the profound influence of hormonal changes on inflammatory outcomes, delineating substantial sex-related differences in immune activation and revealing altered immune responses in OVX mice due to ovarian hormone deficiency. In addition, the flow cytometry analysis highlighted the complex interaction between OVX surgery, acute WS exposure, and their collective impact on immune cell populations within the hematopoietic bone marrow niche. CONCLUSIONS: In summary, both male and female mice, alongside females subjected to OVX and those who had sham surgery, exhibit significant variations in the expression of proinflammatory cytokines, chemokines, lung mRNA gene expression, and related functional networks linked to signaling pathways. These differences potentially act as mediators of sex-specific and hormonal influences in the systemic inflammatory response to acute WS exposure during a wildfire event. Understanding the regulatory roles of genes expressed differentially under environmental stressors holds considerable implications, aiding in identifying sex-specific therapeutic targets for addressing acute lung inflammation and injury.


Assuntos
Exposição por Inalação , Camundongos Endogâmicos C57BL , Animais , Feminino , Masculino , Exposição por Inalação/efeitos adversos , Incêndios Florestais , Material Particulado/toxicidade , Fatores Sexuais , Citocinas/metabolismo , Citocinas/imunologia , Pulmão/imunologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fumaça/efeitos adversos , Poluentes Atmosféricos/toxicidade , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/química , Ovariectomia , Camundongos , Ovário/imunologia , Ovário/efeitos dos fármacos , Ovário/metabolismo
4.
Biochemistry ; 62(15): 2232-2237, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459398

RESUMO

Nitric oxide synthase (NOS) is responsible for the biosynthesis of nitric oxide (NO), an important signaling molecule controlling diverse physiological processes such as neurotransmission and vasodilation. Neuronal NOS (nNOS) is a calmodulin (CaM)-controlled enzyme. In the absence of CaM, several intrinsic control elements, along with NADP+ binding, suppress electron transfer across the NOS domains. CaM binding relieves the inhibitory factors to promote the electron transport required for NO production. The regulatory dynamics of nNOS control elements are critical to governing NO signaling, yet mechanistic questions remain, because the intrinsic dynamics of NOS thwart traditional structural biology approaches. Here, we have employed cross-linking mass spectrometry (XL MS) to probe regulatory dynamics in nNOS, focusing on the CaM-responsive control elements. Quantitative XL MS revealed conformational changes differentiating the nNOS reductase (nNOSred) alone, nNOSred with NADP+, nNOS-CaM, and nNOS-CaM with NADP+. We observed distinct effects of CaM vs NADP+ on cross-linking patterns in nNOSred. CaM induces striking global changes, while the impact of NADP+ is primarily localized to the NADPH-binding subdomain. Moreover, CaM increases the abundance of intra-nNOS cross-links that are related to the formation of the inter-CaM-nNOS cross-links. Taken together, these XL MS results demonstrate that CaM and NADP+ site-specifically alter the nNOS conformational landscape.

5.
J Biol Inorg Chem ; 25(8): 1097-1105, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33057871

RESUMO

Intraprotein interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme centers is an obligatory step in nitric oxide synthase (NOS) enzymes. An isoform-specific pivotal region near Leu406 in the heme domain of human inducible NOS (iNOS) was proposed to mediate the FMN-heme domain-domain alignment (J Inorg Biochem 153:186-196, 2015). The FMN-heme IET rate is a measure of the interdomain FMN/heme complex formation. In this work, the FMN-heme IET kinetics in the wild type (wt) human iNOS oxygenase/FMN (oxyFMN) construct were directly measured by laser flash photolysis with added synthetic peptide related to the pivotal region, in comparison with the wt construct alone. The IET rates were decreased by the iNOS HKL peptide in a dose-saturable fashion, and the inhibitory effect was abolished by a single L406 → E mutation in the peptide. A similar trend in change of the NO synthesis activity of wt iNOS holoenzyme by the peptides was observed. These data, along with the kinetics and modeling results for the L406T and L406F mutant oxyFMN proteins, indicated that the Leu406 residue modulates the FMN-heme IET through hydrophobic interactions. Moreover, the IET rates were analyzed for the wt iNOS oxyFMN protein in the presence of nNOS or eNOS-derived peptide related to the equivalent pivotal heme domain site. These results together indicate that the isoform-specific pivotal region at the heme domain specifically interacts with the conserved FMN domain surface, to facilitate proper interdomain docking for the FMN-heme IET in NOS.


Assuntos
Mononucleotídeo de Flavina/metabolismo , Heme/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transporte de Elétrons , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutação , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/genética , Domínios Proteicos
6.
Biochemistry ; 58(28): 3087-3096, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31251033

RESUMO

Previous biochemical studies of nitric oxide synthase enzymes (NOSs) were conducted in diluted solutions. However, the intracellular milieu where the proteins perform their biological functions is crowded with macromolecules. The effect of crowding on the electron transfer kinetics of multidomain proteins is much less understood. Herein, we investigated the effect of macromolecular crowding on the FMN-heme intraprotein interdomain electron transfer (IET), an obligatory step in NOS catalysis. A noticeable increase in the IET rate in the bidomain oxygenase/FMN (oxyFMN) and the holoprotein of human inducible NOS (iNOS) was observed upon addition of Ficoll 70 in a nonsaturable manner. Additionally, the magnitude of IET enhancement for the holoenzyme is much higher than that that of the oxyFMN construct. The crowding effect is also evident at different ionic strengths. Importantly, the enhancing extent is similar for the iNOS oxyFMN protein with added Ficoll 70 and Dextran 70 that give the same solution viscosity, showing that specific interactions do not exist between the NOS protein and the crowder. Moreover, the population of the docked FMN-heme state is significantly increased upon addition of Ficoll 70 and the fluorescence lifetime values do not correspond to those in the absence of Ficoll 70. The steady-state cytochrome c reduction by the holoenzyme is noticeably enhanced by the crowder, while the ferricyanide reduction is unchanged. The NO production activity of the iNOS holoenzyme is stimulated by Ficoll 70. The effect of macromolecular crowding on the kinetics can be rationalized on the basis of the excluded volume effect, with an entropic origin. The intraprotein electron transfer kinetics, fluorescence lifetime, and steady-state enzymatic activity results indicate that macromolecular crowding modulates the NOS electron transfer through multiple pathways. Such a mechanism should be applicable to electron transfer in other multidomain redox proteins.


Assuntos
Ficoll/metabolismo , Mononucleotídeo de Flavina/metabolismo , Heme/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Ficoll/farmacologia , Mononucleotídeo de Flavina/química , Humanos , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/farmacologia
7.
J Biol Inorg Chem ; 24(1): 1-9, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30315355

RESUMO

Phosphorylation is an important pathway for the regulation of nitric oxide synthase (NOS) at the posttranslational level. However, the molecular underpinnings of NOS regulation by phosphorylations remain unclear to date, mainly because of the problems in making a good amount of active phospho-NOS proteins. Herein, we have established a system in which recombinant rat nNOS holoprotein can be produced with site-specific incorporation of phosphoserine (pSer) at residue 1412, using a specialized bacterial host strain for pSer incorporation. The pSer1412 nNOS protein demonstrates UV-Vis, far-UV CD and fluorescence spectral properties that are identical to those of nNOS overexpressed in other bacterial strains. The protein is also functional, possessing normal NO production and NADPH oxidation activities in the presence of abundant substrate L-Arg. Conversely, the rate of FMN-heme interdomain electron transfer (IET) in pSer1412 nNOS is considerably lower than that of wild-type (wt) nNOS, while the phosphomimetic S1142E mutant possesses similar electron transfer kinetics to that of wt. The successful incorporation and high yield of pSer1412 into rat nNOS and the significant change in the IET kinetics upon the phosphorylation demonstrate a highly useful method for incorporating native phosphorylation sites as a substantial improvement to commonly used phosphomimetics.


Assuntos
Óxido Nítrico Sintase Tipo I/genética , Fosfosserina/metabolismo , Engenharia de Proteínas , Serina/genética , Animais , Holoenzimas/genética , Holoenzimas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Fosforilação , Mutação Puntual , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/análogos & derivados
8.
J Phys Chem A ; 123(32): 7075-7086, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31310526

RESUMO

The nitric oxide synthase (NOS) enzyme consists of multiple domains connected by flexible random coil tethers. In a catalytic cycle, the NOS domains move within the limits determined by the length and flexibility of the interdomain tethers and form docking complexes with each other. This process represents a key component of the electron transport from the flavin adenine dinucleotide/reduced nicotinamide adenine dinucleotide phosphate binding domain to the catalytic heme centers located in the oxygenase domain. Studying the conformational behavior of NOS is therefore imperative for a full understanding of the overall catalytic mechanism. In this work, we have investigated the equilibrium positional distributions of the NOS domains and the bound calmodulin (CaM) by using Monte Carlo calculations of the NOS conformations. As a main experimental reference, we have used the magnetic dipole interaction between a bifunctional spin label attached to T34C/S38C mutant CaM and the NOS heme centers, which was measured by pulsed electron paramagnetic resonance. In general, the calculations of the conformational distributions allow one to determine the range and statistics of positions occupied by the tethered protein domains, assess the crowding effect of the multiple domains on each other, evaluate the accessibility of various potential domain docking sites, and estimate the interaction energies required to achieve target populations of the docked states. In the particular application described here, we have established the specific mechanisms by which the bound CaM facilitates the flavin mononucleotide (FMN)/heme interdomain docking in NOS. We have also shown that the intersubunit FMN/heme domain docking and electron transfer in the homodimeric NOS protein are dictated by the existing structural makeup of the protein. Finally, from comparison of the calculated and experimental docking probabilities, the characteristic stabilization energies for the CaM/heme domain and the FMN domain/heme domain docking complexes have been estimated as -4.5kT and -10.5kT, respectively.


Assuntos
Óxido Nítrico Sintase/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Método de Monte Carlo , Óxido Nítrico Sintase/metabolismo , Conformação Proteica
9.
Inorg Chem ; 57(21): 13470-13476, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30299098

RESUMO

Dichalcogenolene platinum(II) diimine complexes, (LE,E')Pt(bpy), are characterized by charge-separated dichalcogenolene donor (LE,E') → diimine acceptor (bpy) ligand-to-ligand charge transfer (LL'CT) excited states that lead to their interesting photophysics and potential use in solar energy conversion applications. Despite the intense interest in these complexes, the chalcogen dependence on the lifetime of the triplet LL'CT excited state remains unexplained. Three new (LE,E')Pt(bpy) complexes with mixed chalcogen donors exhibit decay rates that are dominated by a spin-orbit mediated nonradiative pathway, the magnitude of which is proportional to the anisotropic covalency provided by the mixed-chalcogen donor ligand environment. This anisotropic covalency is dramatically revealed in the 13C NMR chemical shifts of the donor carbons that bear the chalcogens and is further probed by S K-edge XAS. Remarkably, the NMR chemical shift differences also correlate with the spin-orbit matrix element that connects the triplet excited state with the ground state. Consequently, triplet LL'CT excited state lifetimes are proportional to both functions, demonstrating that specific ground state NMR chemical shifts can be used to evaluate spin-orbit coupling contributions to excited state lifetimes.

10.
Bioorg Med Chem Lett ; 27(20): 4647-4651, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28917649

RESUMO

The purpose of this study was to evaluate the tumor targeting and imaging properties of novel 111In-labeled gonadotropin-releasing hormone (GnRH) peptides for human prostate cancer. Three new 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-linker-d-Phe-(d-Lys6-GnRH) peptides with different hydrocarbon linkers were designed to evaluate their effects on GnRH receptor binding affinities. The Aoc (aminooctanoic acid) linker was better than ßAla (3-aminopropanoic acid) and Aun (aminoundecanoic acid) linkers in retaining strong receptor binding affinity. DOTA-Aoc-d-Phe-(d-Lys6-GnRH) exhibited 6.6±0.1nM GnRH receptor binding affinity. 111In-DOTA-Aoc-d-Phe-(d-Lys6-GnRH) exhibited fast tumor uptake and urinary clearance in DU145 human prostate cancer-xenografted nude mice. The DU145 tumor lesions could be clearly visualized by single photon emission computed tomography (SPECT)/CT using 111In-DOTA-Aoc-d-Phe-(d-Lys6-GnRH) as an imaging probe, providing an insight into the design of new GnRH peptides for prostate cancer in the future.


Assuntos
Hormônio Liberador de Gonadotropina/química , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Complexos de Coordenação/química , Hormônio Liberador de Gonadotropina/metabolismo , Compostos Heterocíclicos com 1 Anel/química , Humanos , Radioisótopos de Índio/química , Masculino , Camundongos , Camundongos Nus , Ligação Proteica , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/urina , Distribuição Tecidual , Transplante Heterólogo
11.
Bioorg Med Chem Lett ; 27(22): 4952-4955, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054361

RESUMO

The purpose of this study was to determine the metastatic melanoma imaging property of 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex {hydrazinonicotinamide-8-aminooctanoic acid-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}. HYNIC-Aoc-Nle-CycMSHhex was synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The IC50 value of HYNIC-Aoc-Nle-CycMSHhex was 0.78 ±â€¯0.13 nM for B16/F10 melanoma cells. 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex displayed significantly higher uptake (14.26 ±â€¯2.74 and 10.45 ±â€¯2.31% ID/g) in B16/F10 metastatic melanoma-bearing lung than that in normal lung (0.90 ±â€¯0.15 and 0.53 ±â€¯0.14% ID/g) at 2 and 4 h post-injection, respectively. B16/F10 pulmonary metastatic melanoma lesions were clearly visualized by SPECT/CT using 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex as an imaging probe at 2 h post-injection, underscoring its potential as an imaging probe for metastatic melanoma detection.


Assuntos
Lactamas/química , Melanoma Experimental/diagnóstico por imagem , Peptídeos Cíclicos/química , Compostos Radiofarmacêuticos/química , alfa-MSH/química , Animais , Linhagem Celular Tumoral , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/análogos & derivados , Niacinamida/química , Peptídeos Cíclicos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Transplante Homólogo
12.
J Biol Inorg Chem ; 21(8): 997-1008, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27686338

RESUMO

Second coordination sphere (SCS) effects in proteins are modulated by active site residues and include hydrogen bonding, electrostatic/dipole interactions, steric interactions, and π-stacking of aromatic residues. In Cyt P450s, extended H-bonding networks are located around the proximal cysteinate ligand of the heme, referred to as the 'Cys pocket'. These hydrogen bonding networks are generally believed to regulate the Fe-S interaction. Previous work identified the S(Cys) → Fe σ CT transition in the high-spin (hs) ferric form of Cyt P450cam and corresponding Cys pocket mutants by low-temperature (LT) MCD spectroscopy [Biochemistry 50:1053, 2011]. In this work, we have investigated the effect of the hydrogen bond from W409 to the axial Cys ligand of the heme in the hs ferric state (with H4B and L-Arg bound) of rat neuronal nitric oxide synthase oxygenase construct (nNOSoxy) using MCD spectroscopy. For this purpose, wt enzyme and W409 mutants were investigated where the H-bonding network with the axial Cys ligand is perturbed. Overall, the results are similar to Cyt P450cam and show the intense S(Cys) → Fe σ CT band in the LT MCD spectrum at about 27,800 cm-1, indicating that this feature is a hallmark of {heme-thiolate} active sites. The discovery of this MCD feature could constitute a new approach to classify {heme-thiolate} sites in hs ferric proteins. Finally, the W409 mutants show that the hydrogen bond from this group only has a small effect on the Fe-S(Cys) bond strength, at least in the hs ferric form of the protein studied here. Low-temperature MCD spectroscopy is used to investigate the effect of the hydrogen bond from W409 to the axial Cys ligand of the heme in neuronal nitric oxide synthase. The intense S(Cys) → Fe σ-CT band is monitored to identify changes in the Fe-S(Cys) bond in wild-type protein and W409 mutants.


Assuntos
Domínio Catalítico , Complexos de Coordenação/química , Cisteína/química , Ferro/química , Óxido Nítrico Sintase Tipo I/química , Animais , Sítios de Ligação/genética , Dicroísmo Circular/métodos , Complexos de Coordenação/metabolismo , Cisteína/genética , Cisteína/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/química , Heme/metabolismo , Ligação de Hidrogênio , Ferro/metabolismo , Ligantes , Modelos Moleculares , Mutação , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Oxirredução , Ratos , Espectrofotometria , Eletricidade Estática , Termodinâmica
13.
Bioorg Med Chem Lett ; 26(19): 4724-4728, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27568083

RESUMO

In this study, the human melanoma targeting property of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex {hydrazinonicotinamide-8-aminooctanoic acid-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} was determined in M21 human melanoma-xenografts to demonstrate its potential for human melanoma imaging. The IC50 value of HYNIC-AocNle-CycMSHhex was 0.48±0.01nM in M21 human melanoma cells (1281receptors/cell). The M21 human melanoma uptake of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex was 4.03±1.25, 3.26±1.23 and 3.36±1.48%ID/g at 0.5, 2 and 4h post-injection, respectively. Approximately 92% of injected dose cleared out the body via urinary system at 2h post-injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex showed high tumor/blood, tumor/muscle and tumor/skin uptake ratios after 2h post-injection. The M21 human melanoma-xenografted tumor lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2h post-injection. Overall, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited favorable human melanoma imaging property, highlighting its potential as an imaging probe for human metastatic melanoma detection.


Assuntos
Lactamas/química , Compostos de Organotecnécio/química , alfa-MSH/química , Animais , Linhagem Celular Tumoral , Ciclização , Xenoenxertos , Humanos , Melanoma Experimental/patologia
14.
J Phys Chem A ; 120(39): 7610-7616, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27633182

RESUMO

The interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains is essential in the biosynthesis of nitric oxide (NO) by the NO synthase (NOS) enzymes. A conserved tyrosine residue in the FMN domain (Y631 in human inducible NOS) was proposed to be a key part of the electron transfer pathway in the FMN/heme docked complex model. In the present study, the FMN-heme IET kinetics in the Y631F mutant and wild type of a bidomain oxygenase/FMN construct of human inducible NOS were determined by laser flash photolysis. The rate constant of the Y631F mutant is significantly decreased by ∼75% (compared to the wild type), showing that the tyrosine residue indeed facilitates the FMN-heme IET through the protein medium. The IET rate constant of the wild type protein decreases from 345 to 242 s-1 on going from H2O to 95% D2O, giving a solvent kinetic isotope effect of 1.4. In contrast, no deuterium isotope effect was observed for the Tyr-to-Phe mutant. Moreover, an appreciable change in the wild type iNOS IET rate constant value was observed upon changing pH. These results indicate that the FMN-heme IET is proton coupled, in which the conserved tyrosine residue may play an important role.


Assuntos
Heme/química , Óxido Nítrico Sintase Tipo II/química , Tirosina/química , Deutério/química , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Cinética , Lasers , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Domínios Proteicos , Solventes/química , Tirosina/genética
15.
J Phys Chem A ; 119(45): 11066-75, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26477677

RESUMO

The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.


Assuntos
Elétrons , Óxido Nítrico Sintase/química , Fotólise , Animais , Monóxido de Carbono/química , Heme/química , Humanos , Cinética , Lasers , Camundongos , Mutação , Óxido Nítrico/química , Óxido Nítrico Sintase/genética , Conformação Proteica , Ratos
16.
J Phys Chem A ; 119(25): 6641-9, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26035438

RESUMO

Oxidation of L-arginine (L-Arg) to nitric oxide (NO) by NO synthase (NOS) takes place at the heme active site. It is of current interest to study structures of the heme species that activates O2 and transforms the substrate. The NOS ferrous-NO complex is a close mimic of the obligatory ferric (hydro)peroxo intermediate in NOS catalysis. In this work, pulsed electron-nuclear double resonance (ENDOR) spectroscopy was used to probe the hydrogen bonding of the NO ligand in the ferrous-NO heme center of neuronal NOS (nNOS) without a substrate and with L-Arg or N-hydroxy-L-arginine (NOHA) substrates. Unexpectedly, no H-bonding interaction connecting the NO ligand to the active site water molecule or the Arg substrate was detected, in contrast to the results obtained by X-ray crystallography for the Arg-bound nNOS heme domain [Li et al. J. Biol. Inorg. Chem. 2006, 11, 753-768]. The nearby exchangeable proton in both the no-substrate and Arg-containing nNOS samples is located outside the H-bonding range and, on the basis of the obtained structural constraints, can belong to the active site water (or OH). On the contrary, in the NOHA-bound sample, the nearby exchangeable hydrogen forms an H-bond with the NO ligand (on the basis of its distance from the NO ligand and a nonzero isotropic hfi constant), but it does not belong to the active site water molecule because the water oxygen atom (detected by (17)O ENDOR) is too far. This hydrogen should therefore come from the NOHA substrate, which is in agreement with the X-ray crystallography work [Li et al. Biochemistry 2009, 48, 10246-10254]. The nearby nonexchangeable hydrogen atom assigned as H(ε) of Phe584 was detected in all three samples. This hydrogen atom may have a stabilizing effect on the NO ligand and probably determines its position.


Assuntos
Heme/química , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico/química , Animais , Arginina/química , Catálise , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogênio/química , Ligação de Hidrogênio , Prótons , Ratos , Água/química
17.
Bioorg Med Chem Lett ; 24(1): 195-8, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24316121

RESUMO

The purpose of this study was to examine the biodistribution of (99m)Tc-RAD-Arg-(Arg(11))CCMSH in B16/F1 melanoma-bearing C57 mice to determine whether the replacement of the Lys linker with an Arg linker could decrease the renal uptake of (99m)Tc-RAD-Arg-(Arg(11))CCMSH. (99m)Tc-RAD-Arg-(Arg(11))CCMSH exhibited rapid and high tumor uptake (17.98±4.96% ID/g at 2h post-injection) in B16/F1 melanoma-bearing C57 mice. As compared to (99m)Tc-RAD-Lys-(Arg(11))CCMSH, the replacement of the Lys linker with an Arg linker dramatically decreased the renal uptake of (99m)Tc-RAD-Arg-(Arg(11))CCMSH by 68%, 62%, 73% and 64% at 0.5, 2, 4 and 24h post-injection, respectively. Flank B16/F1 melanoma lesions were clearly imaged at 2h post-injection using (99m)Tc-RAD-Arg-(Arg(11))CCMSH as an imaging probe.


Assuntos
Rim/metabolismo , Oligopeptídeos/farmacocinética , Tecnécio/farmacocinética , alfa-MSH/farmacocinética , Animais , Melanoma/diagnóstico , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Oligopeptídeos/química , Tecnécio/química , Distribuição Tecidual , alfa-MSH/química
18.
Inorg Chem ; 53(10): 4791-3, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24773363

RESUMO

Transient absorption and emission spectroscopic studies on a series of diimineplatinum(II) dichalcogenolenes, LPtL', reveal charge-separated dichalcogenolene → diimine charge-transfer (LL'CT) excited-state lifetimes that display a remarkable and nonperiodic dependence on the heteroatoms of the dichalcogenolene ligand. Namely, there is no linear relationship between the observed lifetimes and the principle quantum number of the E donors. The results are explained in terms of heteroatom-dependent singlet-triplet (S-T) energy gaps and anisotropic covalency contributions to the M-E (E = O, S, Se) bonding scheme that control rates of intersystem crossing. For the dioxolene complex, 1-O,O', E(T2) > E(S1) and rapid nonradiative decay occurs from S1 to S0. However, E(T2) ≤ E(S1) for the heavy-atom congeners, and this provides a mechanism for rapid intersystem crossing. Subsequent internal conversion to T1 in 3-S,S produces a long-lived, emissive triplet. The two LPtL' complexes with mixed chalcogen donors and 5-Se,Se show lifetimes intermediate between those of 1-O,O' and 3-S,S.


Assuntos
Compostos Organoplatínicos/química , Cinética , Ligantes , Estrutura Molecular
19.
J Phys Chem A ; 118(34): 6864-72, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25046446

RESUMO

The binding of calmodulin (CaM) to neuronal nitric oxide synthase (nNOS) enables formation of the output state of nNOS for nitric oxide production. Essential to NOS function is the geometry and dynamics of CaM docking to the NOS oxygenase domain, but little is known about these details. In the present work, the domain docking in a CaM-bound oxygenase/FMN (oxyFMN) construct of nNOS was investigated using the relaxation-induced dipolar modulation enhancement (RIDME) technique, which is a pulsed electron paramagnetic resonance technique sensitive to the magnetic dipole interaction between the electron spins. A cysteine was introduced at position 110 of CaM, after which a nitroxide spin label was attached at the position. The RIDME study of the magnetic dipole interaction between the spin label and the ferric heme centers in the oxygenase domain of nNOS revealed that, with increasing [Ca(2+)], the concentration of nNOS·CaM complexes increases and reaches a maximum at [Ca(2+)]/[CaM] ≥ 4. The RIDME kinetics of CaM-bound nNOS represented monotonous decays without well-defined oscillations. The analysis of these kinetics based on the structural models for the open and docked states has shown that only about 15 ± 3% of the CaM-bound nNOS is in the docked state at any given time, while the remaining 85 ± 3% of the protein is in the open conformations characterized by a wide distribution of distances between the bound CaM and the oxygenase domain. The results of this investigation are consistent with a model that the Ca(2+)-CaM interaction causes CaM docking with the oxygenase domain. The low population of the docked state indicates that the CaM-controlled docking between the FMN and heme domains is highly dynamic.


Assuntos
Calmodulina/química , Óxido Nítrico Sintase Tipo I/química , Animais , Cálcio/química , Calmodulina/genética , Simulação por Computador , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Escherichia coli , Heme/química , Cinética , Fenômenos Magnéticos , Modelos Moleculares , Óxido Nítrico Sintase Tipo I/genética , Ratos , Marcadores de Spin , Transfecção
20.
J Inorg Biochem ; 251: 112454, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100901

RESUMO

Neuronal nitric oxide synthase (nNOS) is regulated by phosphorylation in vivo, yet the underlying biochemical mechanisms remain unclear, primarily due to difficulty in obtaining milligram quantities of phosphorylated nNOS protein; detailed spectroscopic and rapid kinetics investigations require purified protein samples at a concentration in the range of hundreds microM. Moreover, the functional diversity of the nNOS isoform is linked to its splice variants. Also of note is that determination of protein phosphorylation stoichiometry remains as a challenge. To address these issues, this study first expanded a recent genetic code expansion approach to produce phosphorylated rat nNOSµ and nNOSα holoproteins through site-specific incorporation of phosphoserine (pSer) at residues 1446 and 1412, respectively; this site is at the C-terminal tail region, a NOS-unique regulatory element. A quantitative mass spectrometric approach was then developed in-house to analyze unphosphorylated peptides in phosphatase-treated and -untreated phospho-nNOS proteins. The observed pSer-incorporation efficiency consistently exceeded 80%, showing high pSer-incorporation efficiency. Notably, EPR spin trapping results demonstrate that under l-arginine-depleted conditions, pSer1412 nNOSα presented a significant reduction in superoxide generation, whereas pSer1446 nNOSµ exhibited the opposite effect, compared to their unphosphorylated counterparts. This suggests that phosphorylation at the C-terminal tail has a regulatory effect on nNOS uncoupling that may differ between variant forms. Furthermore, the methodologies for incorporating pSer into large, complex protein and quantifying the percentage of phosphorylation in recombinant purified protein should be applicable to other protein systems.


Assuntos
Óxido Nítrico Sintase Tipo I , Óxido Nítrico , Superóxidos , Animais , Ratos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Fosforilação , Fosfosserina/metabolismo , Proteínas Recombinantes/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA