RESUMO
BACKGROUND: Oxidative stress-induced retinal pigment epithelium (RPE) cell damage is a major factor in age-related macular degeneration (AMD). Vitamin D3 (VD3) is a powerful antioxidant and it has been suggested to have anti-aging properties and potential for treating AMD. This study aimed to investigate the effect of VD3 on RPE cell oxidative apoptosis of RPE cells in order to provide experimental evidence for the treatment of AMD. METHODS: Human retinal pigment epithelial cell 19 (ARPE-19) cells were divided into four groups: blank group (untreated), model group (incubated in medium with 400 µmol/L H2O2 for 1 h), VD3 group (incubated in medium with 100 µmol/L VD3 for 24 h), and treatment group (incubated in medium with 400 µmol/L H2O2 for 1 h and 100 µmol/L VD3 for 24 h). Cell viability, cell senescence, ROS content, expression levels of vitamin D specific receptors, Akt, Sirt1, NAMPT, and JNK mRNA expression levels, SOD activity, and MDA, GSH, and GPX levels were measured. RESULTS: We first established an ARPE-19 cell stress model with H2O2. Our control experiment showed that VD3 treatment had no significant effect on ARPE-19 cell viability within 6-48 h. Treating the stressed ARPE-19 cells with VD3 showed mixed results; caspase-3 expression was decreased, Bcl-2 expression was increased, MDA level of ARPE-19 cells was decreased, GSH-PX, GPX and SOD levels were increased, the relative mRNA expression levels of Akt, Sirt1, NAMPT were increased (P < 0.05), and the relative mRNA expression level of JNK was decreased (P < 0.05). CONCLUSION: VD3 can potentially slow the development of AMD.
Assuntos
Apoptose , Sobrevivência Celular , Estresse Oxidativo , Epitélio Pigmentado da Retina , Humanos , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Degeneração Macular/metabolismo , Vitaminas/farmacologia , Vitamina D/farmacologia , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Sirtuína 1/metabolismo , Sirtuína 1/genética , Senescência Celular/efeitos dos fármacos , Linhagem Celular , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidadeRESUMO
Background: The impact of serum uric acid (SUA) trajectories on the development of retinal arteriosclerosis is uncertain. The purpose of this study was to identify adult SUA trajectories by sex and determine their association with risk of retinal arteriosclerosis. Methods: In this longitudinal study, 4,324 participants who were aged between 18 and 60 years without retinal arteriosclerosis at or before baseline (from January 1, 2010, through December 31, 2010) were included. Group-based trajectory modeling was used to identify SUA trajectories during the exposure period (from January 1, 2006, through December 31, 2010). Cox proportional-hazards models were applied to evaluate the associations between SUA trajectories and the risk of incident retinal arteriosclerosis during the outcome period (from January 1, 2011, through December 31, 2019). Results: 4 distinct SUA trajectories were identified in both women and men: low, moderate, moderate-high, and high. During a median follow-up of 9.54 years (IQR 9.53-9.56), 97 women and 295 men had developed retinal arteriosclerosis. In the fully adjusted model, a significant association between the moderate-high SUA trajectory group and incidence of retinal arteriosclerosis was observed only in men (HR: 1.76, 95% CI: 1.17-2.65) compared with the low trajectory group, but not in women (HR: 0.77, 95% CI: 0.39-1.52). Also, the high SUA trajectory group had the highest risk with an adjusted HR of 1.81 (95% CI, 1.04-3.17) in men. However, they did not exhibit a substantially increased risk in women. Conclusion: Higher SUA trajectory groups were significantly associated with an increased risk of incident retinal arteriosclerosis in men but not in women.