Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(9): 5920-5929, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31374165

RESUMO

Owing to the relatively low hole mobility, the development of GaSb nanowire (NW) electronic and photoelectronic devices has stagnated in the past decade. During a typical catalyst-assisted chemical vapor deposition (CVD) process, the adopted metallic catalyst can be incorporated into the NW body to act as a slight dopant, thus regulating the electrical properties of the NW. In this work, we demonstrate the use of Sn as a catalyst and dopant for GaSb NWs in the surfactant-assisted CVD growth process. The Sn-catalyzed zinc-blende GaSb NWs are thin, long, and straight with good crystallinity, resulting in a record peak hole mobility of 1028 cm2 V-1 s-1. This high mobility is attributed to the slight doping of Sn atoms from the catalyst tip into the NW body, which is verified by the red-shifted photoluminescence peak of Sn-catalyzed GaSb NWs (0.69 eV) compared with that of Au-catalyzed NWs (0.74 eV). Furthermore, the parallel array NWs also show a high peak hole mobility of 170 cm2 V-1 s-1, a high responsivity of 61 A W-1, and fast rise and decay times of 195.1 and 380.4 µs, respectively, under the illumination of 1550 nm infrared light. All of the results demonstrate that the as-prepared Sn-catalyzed GaSb NWs are promising for application in next-generation electronics and optoelectronics.

2.
Adv Mater ; 36(3): e2302297, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37565385

RESUMO

Transition metal dichalcogenide (TMDC) films exhibit rich phases and superstructures, which can be controlled by the growth conditions as well as post-growth annealing treatment. Here, the selective growth of monolayer TaTe2 films with different phases as well as superstructures using molecular beam epitaxy (MBE) is reported. Monolayer 1H-TaTe2 and 1T-TaTe2 films can be selectively controlled by varying the growth temperature, and their different electronic structures are revealed through the combination of angle-resolved photoemission spectroscopy measurements (ARPES) and first-principles calculations. Moreover, post-growth annealing of the 1H-TaTe2 film further leads to a transition from a 19 × 19 $\sqrt {19}{\times }\sqrt {19}$ superstructure to a new 2 × 2 superstructure, where two gaps are observed in the electronic structure and persist up to room temperature. First-principles calculations reveal the role of the phonon instability in the formation of superstructures and the effect of local atomic distortions on the modified electronic structures. This work demonstrates the manipulation of the rich phases and superstructures of monolayer TaTe2 films by controlling the growth kinetics and post-growth annealing.

3.
Rev Sci Instrum ; 93(1): 013902, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104958

RESUMO

Time- and angle-resolved photoemission spectroscopy (TrARPES) is a powerful technique for capturing the ultrafast dynamics of charge carriers and revealing photo-induced phase transitions in quantum materials. However, the lack of widely tunable probe photon energy, which is critical for accessing the dispersions at different out-of-plane momentum kz in TrARPES measurements, has hindered the ultrafast dynamics investigation of 3D quantum materials, such as Dirac or Weyl semimetals. Here, we report the development of a TrARPES system with a highly tunable probe photon energy from 5.3 to 7.0 eV. The tunable probe photon energy is generated by the fourth harmonic generation of a tunable wavelength femtosecond laser source by combining a ß-BaB2O4 crystal and a KBe2BO3F2 crystal. A high energy resolution of 29-48 meV and time resolution of 280-320 fs are demonstrated on 3D topological materials ZrTe5 and Sb2Te3. Our work opens up new opportunities for exploring ultrafast dynamics in 3D quantum materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA