Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 818
Filtrar
1.
Cell ; 186(4): 864-876.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36750095

RESUMO

A fundamental strategy of eukaryotic antiviral immunity involves the cGAS enzyme, which synthesizes 2',3'-cGAMP and activates the effector STING. Diverse bacteria contain cGAS-like enzymes that produce cyclic oligonucleotides and induce anti-phage activity, known as CBASS. However, this activity has only been demonstrated through heterologous expression. Whether bacteria harboring CBASS antagonize and co-evolve with phages is unknown. Here, we identified an endogenous cGAS-like enzyme in Pseudomonas aeruginosa that generates 3',3'-cGAMP during phage infection, signals to a phospholipase effector, and limits phage replication. In response, phages express an anti-CBASS protein ("Acb2") that forms a hexamer with three 3',3'-cGAMP molecules and reduces phospholipase activity. Acb2 also binds to molecules produced by other bacterial cGAS-like enzymes (3',3'-cUU/UA/UG/AA) and mammalian cGAS (2',3'-cGAMP), suggesting broad inhibition of cGAS-based immunity. Upon Acb2 deletion, CBASS blocks lytic phage replication and lysogenic induction, but rare phages evade CBASS through major capsid gene mutations. Altogether, we demonstrate endogenous CBASS anti-phage function and strategies of CBASS inhibition and evasion.


Assuntos
Bactérias , Bacteriófagos , Animais , Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/fisiologia , Imunidade , Nucleotidiltransferases/metabolismo
2.
Mol Cell ; 84(2): 375-385.e7, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38103556

RESUMO

Cyclic-oligonucleotide-based anti-phage signaling system (CBASS) is a common immune system that uses cyclic oligonucleotide signals to limit phage replication. In turn, phages encode anti-CBASS (Acb) proteins such as Acb2, which can sequester some cyclic dinucleotides (CDNs) and limit downstream effector activation. Here, we identified that Acb2 sequesters many CDNs produced by CBASS systems and inhibits stimulator of interferon genes (STING) activity in human cells. Surprisingly, the Acb2 hexamer also binds with high affinity to CBASS cyclic trinucleotides (CTNs) 3'3'3'-cyclic AMP-AMP-AMP and 3'3'3'-cAAG at a distinct site from CDNs. One Acb2 hexamer can simultaneously bind two CTNs and three CDNs. Phage-encoded Acb2 provides protection from type III-C CBASS that uses cA3 signaling molecules. Moreover, phylogenetic analysis of >2,000 Acb2 homologs encoded by diverse phages and prophages revealed that most are expected to bind both CTNs and CDNs. Altogether, Acb2 sequesters nearly all known CBASS signaling molecules through two distinct binding pockets and therefore serves as a broad-spectrum inhibitor of cGAS-based immunity.


Assuntos
Bacteriófagos , Nucleotídeos Cíclicos , Humanos , Nucleotídeos Cíclicos/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Filogenia , AMP Cíclico , Oligonucleotídeos
3.
Mol Cell ; 82(23): 4503-4518.e8, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306795

RESUMO

In the type III-E CRISPR-Cas system, a Cas effector (gRAMP) is associated with a TPR-CHAT to form Craspase (CRISPR-guided caspase). However, both the structural features of gRAMP and the immunity mechanism remain unknown for this system. Here, we report structures of gRAMP-crRNA and gRAMP:cRNA:target RNA as well as structures of Craspase and Craspase complexed with cognate target RNA (CTR) or non-cognate target RNA (NTR). Importantly, the 3' anti-tag region of NTR and CTR binds at two distinct channels in Craspase, and CTR with a non-complementary 3' anti-tag induces a marked conformational change of the TPR-CHAT, which allosterically activates its protease activity to cleave an ancillary protein Csx30. This cleavage then triggers an abortive infection as the antiviral strategy of the type III-E system. Together, our study provides crucial insights into both the catalytic mechanism of the gRAMP and the immunity mechanism of the type III-E system.


Assuntos
Proteínas Associadas a CRISPR , Proteínas Associadas a CRISPR/genética , RNA/metabolismo , Antivirais , Sistemas CRISPR-Cas , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
4.
Mol Cell ; 80(3): 512-524.e5, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33049228

RESUMO

CRISPR-Cas systems are bacterial anti-viral systems, and phages use anti-CRISPR proteins (Acrs) to inactivate these systems. Here, we report a novel mechanism by which AcrIF11 inhibits the type I-F CRISPR system. Our structural and biochemical studies demonstrate that AcrIF11 functions as a novel mono-ADP-ribosyltransferase (mART) to modify N250 of the Cas8f subunit, a residue required for recognition of the protospacer-adjacent motif, within the crRNA-guided surveillance (Csy) complex from Pseudomonas aeruginosa. The AcrIF11-mediated ADP-ribosylation of the Csy complex results in complete loss of its double-stranded DNA (dsDNA) binding activity. Biochemical studies show that AcrIF11 requires, besides Cas8f, the Cas7.6f subunit for binding to and modifying the Csy complex. Our study not only reveals an unprecedented mechanism of type I CRISPR-Cas inhibition and the evolutionary arms race between phages and bacteria but also suggests an approach for designing highly potent regulatory tools in the future applications of type I CRISPR-Cas systems.


Assuntos
Proteínas Associadas a CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas/fisiologia , Proteínas Virais/metabolismo , ADP-Ribosilação/fisiologia , Proteínas de Bactérias/genética , Bacteriófagos/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Microscopia Crioeletrônica/métodos , DNA/metabolismo , Modelos Moleculares , RNA Bacteriano/metabolismo , Proteínas Virais/genética
5.
Proc Natl Acad Sci U S A ; 121(7): e2315476121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319970

RESUMO

Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) a/c-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy. The crucial PsaA/B subunits of a red tidal dinoflagellate Amphidinium carterae are remarkably smaller and hence losing over 20 pigment-binding sites, whereas its PsaD/F/I/J/L/M/R subunits are larger and coordinate some additional pigment sites compared to other eukaryotic photosynthetic organisms, which may compensate for the smaller PsaA/B subunits. Similar modifications are observed in a coral symbiotic dinoflagellate Symbiodinium species, where two additional core proteins and fewer AcpPCIs are identified in the PSI-AcpPCI supercomplex. The antenna proteins AcpPCIs in dinoflagellates developed some loops and pigment sites as a result to accommodate the changed PSI core, therefore the structures of PSI-AcpPCI supercomplex of dinoflagellates reveal an unusual protein assembly pattern. A huge pigment network comprising Chls a and c and various carotenoids is revealed from the structural analysis, which provides the basis for our deeper understanding of the energy transfer and dissipation within the PSI-AcpPCI supercomplex, as well as the evolution of photosynthetic organisms.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Dinoflagellida/metabolismo , Proliferação Nociva de Algas , Simbiose , Microscopia Crioeletrônica , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/metabolismo
6.
Nat Chem Biol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977786

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are prokaryotic adaptive immune systems against invading phages and other mobile genetic elements. Notably, some phages, including the Vibrio cholerae-infecting ICP1 (International Center for Diarrheal Disease Research, Bangladesh cholera phage 1), harbor CRISPR-Cas systems to counteract host defenses. Nevertheless, ICP1 Cas8f lacks the helical bundle domain essential for recruitment of helicase-nuclease Cas2/3 during target DNA cleavage and how this system accomplishes the interference stage remains unknown. Here, we found that Cas1, a highly conserved component known to exclusively work in the adaptation stage, also mediates the interference stage through connecting Cas2/3 to the DNA-bound CRISPR-associated complex for antiviral defense (Cascade; CRISPR system yersinia, Csy) of the ICP1 CRISPR-Cas system. A series of structures of Csy, Csy-dsDNA (double-stranded DNA), Cas1-Cas2/3 and Csy-dsDNA-Cas1-Cas2/3 complexes reveal the whole process of Cas1-mediated target DNA cleavage by the ICP1 CRISPR-Cas system. Together, these data support an unprecedented model in which Cas1 mediates the interference stage in a phage-encoded CRISPR-Cas system and the study also sheds light on a unique model of primed adaptation.

7.
Proc Natl Acad Sci U S A ; 120(5): e2215575120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36696445

RESUMO

Chloroplast division involves the coordination of protein complexes from the stroma to the cytosol. The Min system of chloroplasts includes multiple stromal proteins that regulate the positioning of the division site. The outer envelope protein PLASTID DIVISION1 (PDV1) was previously reported to recruit the cytosolic chloroplast division protein ACCUMULATION AND REPLICATION OF CHLOROPLAST5 (ARC5). However, we show here that PDV1 is also important for the stability of the inner envelope chloroplast division protein PARALOG OF ARC6 (PARC6), a component of the Min system. We solved the structure of both the C-terminal domain of PARC6 and its complex with the C terminus of PDV1. The formation of an intramolecular disulfide bond within PARC6 under oxidized conditions prevents its interaction with PDV1. Interestingly, this disulfide bond can be reduced by light in planta, thus promoting PDV1-PARC6 interaction and chloroplast division. Interaction with PDV1 can induce the dimerization of PARC6, which is important for chloroplast division. Magnesium ions, whose concentration in chloroplasts increases upon light exposure, also promote the PARC6 dimerization. This study highlights the multilayer regulation of the PDV1-PARC6 interaction as well as chloroplast division.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastídeos/metabolismo , Cloroplastos/metabolismo , Dissulfetos/metabolismo , Dinaminas/metabolismo
8.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36642408

RESUMO

Current machine learning-based methods have achieved inspiring predictions in the scenarios of mono-type and multi-type drug-drug interactions (DDIs), but they all ignore enhancive and depressive pharmacological changes triggered by DDIs. In addition, these pharmacological changes are asymmetric since the roles of two drugs in an interaction are different. More importantly, these pharmacological changes imply significant topological patterns among DDIs. To address the above issues, we first leverage Balance theory and Status theory in social networks to reveal the topological patterns among directed pharmacological DDIs, which are modeled as a signed and directed network. Then, we design a novel graph representation learning model named SGRL-DDI (social theory-enhanced graph representation learning for DDI) to realize the multitask prediction of DDIs. SGRL-DDI model can capture the task-joint information by integrating relation graph convolutional networks with Balance and Status patterns. Moreover, we utilize task-specific deep neural networks to perform two tasks, including the prediction of enhancive/depressive DDIs and the prediction of directed DDIs. Based on DDI entries collected from DrugBank, the superiority of our model is demonstrated by the comparison with other state-of-the-art methods. Furthermore, the ablation study verifies that Balance and Status patterns help characterize directed pharmacological DDIs, and that the joint of two tasks provides better DDI representations than individual tasks. Last, we demonstrate the practical effectiveness of our model by a version-dependent test, where 88.47 and 81.38% DDI out of newly added entries provided by the latest release of DrugBank are validated in two predicting tasks respectively.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Interações Medicamentosas
9.
Plant Cell ; 34(1): 419-432, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34755875

RESUMO

In bacteria and chloroplasts, the GTPase filamentous temperature-sensitive Z (FtsZ) is essential for division and polymerizes to form rings that mark the division site. Plants contain two FtsZ subfamilies (FtsZ1 and FtsZ2) with different assembly dynamics. FtsZ1 lacks the C-terminal domain of a typical FtsZ protein. Here, we show that the conserved short motif FtsZ1Carboxyl-terminus (Z1C) (consisting of the amino acids RRLFF) with weak membrane-binding activity is present at the C-terminus of FtsZ1 in angiosperms. For a polymer-forming protein such as FtsZ, this activity is strong enough for membrane tethering. Arabidopsis thaliana plants with mutated Z1C motifs contained heterogeneously sized chloroplasts and parallel FtsZ rings or long FtsZ filaments, suggesting that the Z1C motif plays an important role in regulating FtsZ ring dynamics. Our findings uncover a type of amphiphilic beta-strand motif with weak membrane-binding activity and point to the importance of this motif for the dynamic regulation of protein complex formation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
10.
Nucleic Acids Res ; 51(9): 4341-4362, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36928661

RESUMO

BRCA1 mutations are associated with increased breast and ovarian cancer risk. BRCA1-mutant tumors are high-grade, recurrent, and often become resistant to standard therapies. Herein, we performed a targeted CRISPR-Cas9 screen and identified MEPCE, a methylphosphate capping enzyme, as a synthetic lethal interactor of BRCA1. Mechanistically, we demonstrate that depletion of MEPCE in a BRCA1-deficient setting led to dysregulated RNA polymerase II (RNAPII) promoter-proximal pausing, R-loop accumulation, and replication stress, contributing to transcription-replication collisions. These collisions compromise genomic integrity resulting in loss of viability of BRCA1-deficient cells. We also extend these findings to another RNAPII-regulating factor, PAF1. This study identifies a new class of synthetic lethal partners of BRCA1 that exploit the RNAPII pausing regulation and highlight the untapped potential of transcription-replication collision-inducing factors as unique potential therapeutic targets for treating cancers associated with BRCA1 mutations.


Assuntos
Proteína BRCA1 , Replicação do DNA , Síndrome Hereditária de Câncer de Mama e Ovário , Mutação , Transcrição Gênica , Humanos , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Replicação do DNA/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Síndrome Hereditária de Câncer de Mama e Ovário/patologia , Síndrome Hereditária de Câncer de Mama e Ovário/fisiopatologia , RNA Polimerase II/metabolismo , Transcrição Gênica/genética , Regiões Promotoras Genéticas , Metiltransferases/deficiência , Metiltransferases/genética , Estruturas R-Loop , Morte Celular
11.
BMC Genomics ; 25(1): 23, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166718

RESUMO

BACKGROUND: Jianli pig, a renowned indigenous breed in China, has the characteristics of a two-end black (TEB) coat color, excellent meat quality, strong adaptability and increased prolificacy. However, there is limited information available regarding the genetic diversity, population structure and genomic regions under selection of Jianli pig. On the other hand, the genetic mechanism of TEB coat color has remained largely unknown. RESULTS: In this study, the whole genome resequencing of 30 Jianli pigs within a context of 153 individuals representing 13 diverse breeds was performed. The population structure analysis revealed that Jianli pigs have close genetic relationships with the Tongcheng pig breed, their geographical neighbors. Three methods (observed heterozygosity, expected heterozygosity, and runs of homozygosity) implied a relatively high level of genetic diversity and, a low inbreeding coefficient in Jianli compared with other pigs. We used Fst and XP-EHH to detect the selection signatures in Jianli pigs compared with Asian wild boar. A total of 451 candidate genes influencing meat quality (CREBBP, ADCY9, EEPD1 and HDAC9), reproduction (ESR1 and FANCA), and coat color (EDNRB, MITF and MC1R), were detected by gene annotation analysis. Finally, to fine-map the genomic region for the two-end black (TEB) coat color phenotype in Jianli pigs, we performed three signature selection methods between the TEB coat color and no-TEB coat color pig breeds. The current study, further confirmed that the EDNRB gene is a candidate gene for TEB color phenotype found in Chinese pigs, including Jinhua pigs, and the haplotype harboring 25 SNPs in the EDNRB gene may promote the formation of TEB coat color. Further ATAC-seq and luciferase reporter assays of these regions suggest that the 25-SNPs region was a strong candidate causative mutation that regulates the TEB coat color phenotype by altering enhancer function. CONCLUSION: Our results advanced the understanding of the genetic mechanism behind artificial selection, and provided further resources for the protection and breeding improvement of Jianli pigs.


Assuntos
Genoma , Receptor de Endotelina B , Seleção Genética , Animais , Haplótipos , Homozigoto , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptor de Endotelina B/genética , Suínos/genética
12.
Curr Issues Mol Biol ; 46(5): 3906-3918, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785510

RESUMO

The high recurrence rate of cervical cancer is a leading cause of cancer deaths in women. 5-Fluorouracil (5-FU) is an antitumor drug used to treat many types of cancer, but its diminishing effectiveness and side effects limit its use. Norcantharidin (NCTD), a demethylated derivative of cantharidin, exhibits various biological activities. Here, we investigated whether NCTD could potentiate 5-FU to induce cervical cancer cell death. To assess the cell viability and synergistic effects of the drugs, cell counting kit-8 and colony formation assays were performed using HR-HPV-positive cervical cancer cell lines. Annexin V-FITC/PI staining and TUNEL assays were performed to confirm the induction of apoptosis. The synergistic effect of NCTD on the antitumor activity of 5-FU was analyzed using network pharmacology, molecular docking, and molecular dynamics simulations. Apoptosis-related proteins were examined using immunoblotting. The combination of NCTD and 5-FU was synergistic in cervical cancer cell lines. Network pharmacological analysis identified 10 common targets of NCTD and 5-FU for cervical cancer treatment. Molecular docking showed the strong binding affinity of both compounds with CA12, CASP9, and PTGS1. Molecular dynamics simulations showed that the complex system of both drugs with caspase-9 could be in a stable state. NCTD enhanced 5-FU-mediated cytotoxicity by activating apoptosis-related proteins. NCTD acts synergistically with 5-FU to inhibit cervical cancer cell proliferation. NCTD enhances 5-FU-induced apoptosis in cervical cancer cell lines via the caspase-dependent pathway.

13.
Thorax ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871464

RESUMO

RATIONALE: Early natural menopause (early-M; <45 years of age) increases the risk of lung morbidities and mortalities in smokers. However, it is largely unknown whether early-M due to surgery demonstrates similar effects and whether menopausal hormone therapy (MHT) is protective against lung diseases. OBJECTIVES: To assess the associations of early-M and MHT with lung morbidities and mortalities using the prospective Prostate, Lung, Colorectal and Ovarian (PLCO) trial. METHODS: We estimated the risk among 69 706 postmenopausal women in the PLCO trial, stratified by menopausal types and smoking status. RESULTS: Early-M was associated with an increased risk of most lung disease and mortality outcomes in ever smokers with the highest risk seen for respiratory mortality (HR 1.98, 95% CI 1.34 to 2.92) in those with bilateral oophorectomy (BO). Early-M was positively associated with chronic bronchitis, and all-cause, non-cancer and respiratory mortality in never smokers with natural menopause or BO, with the highest risk seen for BO- respiratory mortality (HR 1.91, 95% CI 1.16 to 3.12). Ever MHT was associated with reduced all-cause, non-cancer and cardiovascular mortality across menopause types regardless of smoking status and was additionally associated with reduced risk of non-ovarian cancer, lung cancer (LC) and respiratory mortality in ever smokers. Among smokers, ever MHT use was associated with a reduction in HR for all-cause, non-cancer and cardiovascular mortality in a duration-dependent manner. CONCLUSIONS: Smokers with early-M should be targeted for smoking cessation and LC screening regardless of menopause types. MHT users had a lower likelihood of dying from LC and respiratory diseases in ever smokers.

14.
Cancer Immunol Immunother ; 73(8): 145, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832992

RESUMO

Ovarian cancer is one of the most lethal malignant tumors, characterized by high incidence and poor prognosis. Patients relapse occurred in 65-80% after initial treatment. To date, no effective treatment has been established for these patients. Recently, CD47 has been considered as a promising immunotherapy target. In this paper, we reviewed the biological roles of CD47 in ovarian cancer and summarized the related mechanisms. For most types of cancers, the CD47/Sirpα immune checkpoint has attracted the most attention in immunotherapy. Notably, CD47 monoclonal antibodies and related molecules are promising in the immunotherapy of ovarian cancer, and further research is needed. In the future, new immunotherapy regimens targeting CD47 can be applied to the clinical treatment of ovarian cancer patients.


Assuntos
Antígeno CD47 , Progressão da Doença , Neoplasias Ovarianas , Humanos , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Feminino , Imunoterapia/métodos , Animais
15.
BMC Plant Biol ; 24(1): 651, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977969

RESUMO

Soybean is a major source of protein and edible oil worldwide. Originating from the Huang-Huai-Hai region, which has a temperate climate, soybean has adapted to a wide latitudinal gradient across China. However, the genetic mechanisms responsible for the widespread latitudinal adaptation in soybean, as well as the genetic basis, adaptive differentiation, and evolutionary implications of theses natural alleles, are currently lacking in comprehensive understanding. In this study, we examined the genetic variations of fourteen major gene loci controlling flowering and maturity in 103 wild species, 1048 landraces, and 1747 cultivated species. We found that E1, E3, FT2a, J, Tof11, Tof16, and Tof18 were favoured during soybean improvement and selection, which explained 75.5% of the flowering time phenotypic variation. These genetic variation was significantly associated with differences in latitude via the LFMM algorithm. Haplotype network and geographic distribution analysis suggested that gene combinations were associated with flowering time diversity contributed to the expansion of soybean, with more HapA clustering together when soybean moved to latitudes beyond 35°N. The geographical evolution model was developed to accurately predict the suitable planting zone for soybean varieties. Collectively, by integrating knowledge from genomics and haplotype classification, it was revealed that distinct gene combinations improve the adaptation of cultivated soybeans to different latitudes. This study provides insight into the genetic basis underlying the environmental adaptation of soybean accessions, which could contribute to a better understanding of the domestication history of soybean and facilitate soybean climate-smart molecular breeding for various environments.


Assuntos
Domesticação , Variação Genética , Glycine max , Glycine max/genética , Glycine max/fisiologia , Glycine max/crescimento & desenvolvimento , Genes de Plantas , Adaptação Fisiológica/genética , China , Haplótipos , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia
16.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35470854

RESUMO

It is tough to detect unexpected drug-drug interactions (DDIs) in poly-drug treatments because of high costs and clinical limitations. Computational approaches, such as deep learning-based approaches, are promising to screen potential DDIs among numerous drug pairs. Nevertheless, existing approaches neglect the asymmetric roles of two drugs in interaction. Such an asymmetry is crucial to poly-drug treatments since it determines drug priority in co-prescription. This paper designs a directed graph attention network (DGAT-DDI) to predict asymmetric DDIs. First, its encoder learns the embeddings of the source role, the target role and the self-roles of a drug. The source role embedding represents how a drug influences other drugs in DDIs. In contrast, the target role embedding represents how it is influenced by others. The self-role embedding encodes its chemical structure in a role-specific manner. Besides, two role-specific items, aggressiveness and impressionability, capture how the number of interaction partners of a drug affects its interaction tendency. Furthermore, the predictor of DGAT-DDI discriminates direction-specific interactions by the combination between two proximities and the above two role-specific items. The proximities measure the similarity between source/target embeddings and self-role embeddings. In the designated experiments, the comparison with state-of-the-art deep learning models demonstrates the superiority of DGAT-DDI across a direction-specific predicting task and a direction-blinded predicting task. An ablation study reveals how well each component of DGAT-DDI contributes to its ability. Moreover, a case study of finding novel DDIs confirms its practical ability, where 7 out of the top 10 candidates are validated in DrugBank.


Assuntos
Interações Medicamentosas
17.
J Med Virol ; 96(7): e29776, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953430

RESUMO

The genetic diversity of killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) genes influences the host's immune response to viral pathogens. This study aims to explore the impact of five single nucleotide polymorphisms (SNPs) in KIR3DL2 and HLA-A genes on hepatitis C virus (HCV) infection. A total of 2251 individuals were included in the case-control study. SNPs including KIR3DL2 rs11672983, rs3745902, rs1654644, and HLA-A rs3869062, rs12202296 were genotyped. By controlling various confounding factors using a modified logistic regression model, as well as incorporating stratified analysis, joint effects analysis, and multidimensional bioinformatics analysis, we analyzed the relationship between SNPs and HCV infection. The logistic regression analysis showed a correlation between KIR3DL2 rs11672983 AA, KIR3DL2 rs3745902 TT, and increased HCV susceptibility (p < 0.01). Stratified analysis indicated that KIR3DL2 rs1654644 and HLA-A rs3869062 also heightened HCV susceptibility in certain subgroups. A linear trend of rising HCV infection rates was observed when combining KIR3DL2 rs11672983 AA and KIR3DL2 rs3745902 TT (ptrend = 0.007). Bioinformatics analysis suggested these SNPs' regulatory potential and their role in altering messenger RNA secondary structure, implying their functional relevance in HCV susceptibility. Our findings indicate that KIR3DL2 rs11672983 AA and KIR3DL2 rs3745902 TT are significantly associated with increased susceptibility to HCV infection.


Assuntos
Predisposição Genética para Doença , Genótipo , Hepatite C , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Feminino , Estudos de Casos e Controles , Hepatite C/genética , Hepatite C/virologia , Hepatite C/imunologia , Pessoa de Meia-Idade , Adulto , Antígenos HLA-A/genética , Hepacivirus/genética , Hepacivirus/imunologia , Receptores KIR/genética , Idoso , Receptores KIR3DL2/genética
18.
Nat Chem Biol ; 18(6): 670-677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35301482

RESUMO

CRISPR-Cas systems are prokaryotic antiviral systems, and phages use anti-CRISPR proteins (Acrs) to inactivate these systems. Here we present structural and functional analyses of AcrIF5, exploring its unique anti-CRISPR mechanism. AcrIF5 shows binding specificity only for the target DNA-bound form of the crRNA-guided surveillance (Csy) complex, but not the apo Csy complex from the type I-F CRISPR-Cas system. We solved the structure of the Csy-dsDNA-AcrIF5 complex, revealing that the conformational changes of the Csy complex caused by dsDNA binding dictate the binding specificity for the Csy-dsDNA complex by AcrIF5. Mechanistically, five AcrIF5 molecules bind one Csy-dsDNA complex, which destabilizes the helical bundle domain of Cas8f, thus preventing subsequent Cas2/3 recruitment. AcrIF5 exists in symbiosis with AcrIF3, which blocks Cas2/3 recruitment. This attack on the recruitment event stands in contrast to the conventional mechanisms of blocking binding of target DNA. Overall, our study reveals an unprecedented mechanism of CRISPR-Cas inhibition by AcrIF5.


Assuntos
Bacteriófagos , Proteínas Associadas a CRISPR , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Cell Commun Signal ; 22(1): 112, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347507

RESUMO

BACKGROUND: Though (1S, 3R)-RSL3 has been used widely in basic research as a small molecular inducer of ferroptosis, the toxicity on normal cells and poor pharmacokinetic properties of RSL3 limited its clinical application. Here, we investigated the synergism of non-thermal plasma (NTP) and low-concentration RSL3 and attempted to rise the sensitivity of NSCLC cells on RSL3. METHODS: CCK-8 assay was employed to detect the change of cell viability. Microscopy and flowcytometry were applied to identify lipid peroxidation, cell death and reactive oxygen species (ROS) level respectively. The molecular mechanism was inspected with western blot and RT-qPCR. A xenograft mice model was adopted to investigate the effect of NTP and RSL3. RESULTS: We found the synergism of NTP and low-concentration RSL3 triggered severe mitochondria damage, more cell death and rapid ferroptosis occurrence in vitro and in vivo. NTP and RSL3 synergistically induced xCT lysosomal degradation through ROS/AMPK/mTOR signaling. Furthermore, we revealed mitochondrial ROS was the main executor for ferroptosis induced by the combined treatment. CONCLUSION: Our research shows NTP treatment promoted the toxic effect of RSL3 by inducing more ferroptosis rapidly and provided possibility of RSL3 clinical application.


Assuntos
Ferroptose , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP , Lisossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR , Carbolinas/efeitos adversos , Carbolinas/toxicidade
20.
J Org Chem ; 89(3): 1633-1647, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38235569

RESUMO

A metal-free and atom-economic route for the synthesis of naphtho[1,2-b]furan-3-ones has been realized via p-TsOH·H2O-catalyzed intramolecular tandem double cyclization of γ-hydroxy acetylenic ketones with alkynes in formic acid. The benzene-linked furanonyl-ynes are the key intermediates obtained by the scission/recombination of C-O double bonds. Further, the structural modifications of the representative product were implemented by reduction, demethylation, substitution, and [5 + 2]-cycloaddition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA