Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Pharmacol Rev ; 75(4): 758-788, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36918260

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the midbrain. The loss of neurons results in a subsequent reduction of dopamine in the striatum, which underlies the core motor symptoms of PD. To date, there are no effective treatments to stop, slow, or reverse the pathologic progression of dopaminergic neurodegeneration. This unfortunate predicament is because of the current early stages in understanding the biologic targets and pathways involved in PD pathogenesis. Ion channels have become emerging targets for new therapeutic development for PD due to their essential roles in neuronal function and neuroinflammation. Potassium channels are the most prominent ion channel family and have been shown to be critically important in PD pathology because of their roles in modulating neuronal excitability, neurotransmitter release, synaptic transmission, and neuroinflammation. In this review, members of the subfamilies of voltage-gated K+ channels, inward rectifying K+ channels, and Ca2+-activated K+ channels are described. Evidence of the role of these channels in PD etiology is discussed together with the latest views on related pathologic mechanisms and their potential as biologic targets for developing neuroprotective drugs for PD. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) is the second most common neurodegenerative disorder, featuring progressive degeneration of dopaminergic neurons in the midbrain. It is a multifactorial disease involving multiple risk factors and complex pathobiological mechanisms. Mounting evidence suggests that ion channels play vital roles in the pathogenesis and progression of PD by regulating neuronal excitability and immune cell function. Therefore, they have become "hot" biological targets for PD, as demonstrated by multiple clinical trials of drug candidates targeting ion channels for PD therapy.


Assuntos
Produtos Biológicos , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio/uso terapêutico , Doenças Neuroinflamatórias , Canais Iônicos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Produtos Biológicos/uso terapêutico
2.
Inflammopharmacology ; 32(2): 1607-1620, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310564

RESUMO

This study investigates the anti-inflammatory properties of extracts prepared from the leaves of eight southern African medicinal plants used traditionally to treat inflammation and pain. The inhibitory effect of aqueous and ethanol extracts on the release of pro-inflammatory cytokines was determined in lipopolysaccharide (LPS) stimulated and unstimulated RAW 264.7 murine macrophage cells. The levels of interleukin (IL)-1ß, IL-6, tumour necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein (MIP)-2 release were determined using cytokine multiplex-bead assays. The ethanol extracts of Melianthus comosus Vahl (commonly known as honey flower), Tetradenia riparia (Hochst.) Codd (misty plume bush) and Warburgia salutaris (G. Bertol.) Chiov. (pepper-bark tree), demonstrated the most significant inhibitory activity, with over 50-fold inhibition of IL-1ß, IL-6 and TNF-α levels in LPS-stimulated RAW 264.7 macrophages. The aqueous extract of M. comosus also significantly inhibited the secretion of all the tested cytokines and chemokines. Phytochemical investigation of M. comosus ethanol leaf extract using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) led to the detection of crassolide, deoxylimonoic acid D-ring-lactone, 2-hydroxynonanoic acid and 5-noniloxytryptamine. To the best of our knowledge, the cytokine inhibition properties of most of the medicinal plants screened in this study are reported for the first time. Our results support the use of southern African medicinal plants as anti-inflammatory remedies and provide an insight into the immunomodulatory mechanisms of action.


Assuntos
Plantas Medicinais , Animais , Camundongos , Plantas Medicinais/química , Lipopolissacarídeos/farmacologia , Extratos Vegetais/química , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Macrófagos , Citocinas/metabolismo , Anti-Inflamatórios/química , Etanol/química , Óxido Nítrico/metabolismo
3.
Bioorg Med Chem Lett ; 92: 129386, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355024

RESUMO

Asarum sieboldii var. seoulense is a plant species under the family Aristolochiaceae and has been used for centuries as an ingredient in a well-known Traditional Chinese medicine (TCM), "Xixin", to treat symptoms of the neurodegenerative condition Parkinson's Disease (PD). Although there have been studies on the neuroprotective effect of this TCM, the phenotypic profiles of its chemical constituents against PD-implicated cellular organelles have not been reported. This research investigated the chemistry of A. sieboldii var. seoulense extract to identify the active small molecules that exhibited perturbation to the cellular compartments related to PD, potentially supporting its traditional application in treating this condition. 1H NMR-guided chemical investigation of this plant yielded twenty secondary metabolites which belong to isobutylamides, lignans and phenolics. The compounds were evaluated against an olfactory cell line derived from a PD patient using phenotypic assay. Several isolates, 2, 3, 7, 11, 13-16 and 18-20, were found to induce moderate perturbation to the staining of mitochondria, autophagosome and α-tubulin of the cells. Considering that PD pathogenesis is closely related to these cellular compartments, the results provided a rationale for the traditional application of Xixin in the treatment of PD.


Assuntos
Asarum , Doença de Parkinson , Humanos , Asarum/química , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular , Compostos Fitoquímicos
4.
J Nat Prod ; 86(12): 2661-2671, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-37972998

RESUMO

Chemical investigation of the antimalarial medicinal plant Clerodendrum polycephalum led to the isolation of five new diterpenoids, including ajugarins VII-X (1-4) and teuvincenone K (5), along with four known compounds, namely, 12,16-epoxy-6,11,14,17-tetrahydroxy-17(15 → 16)-abeo-5,8,11,13,15-abietapentaen-7-one (6), methyl pheophorbide A (7), loliolide (8), and acacetin (9). The chemical structures of the new compounds were elucidated using NMR spectroscopy, mass spectrometry, circular dichroism, as well as density functional theory calculations. All compounds were evaluated for in vitro activity against Plasmodium falciparum 3D7 malaria parasites with methyl pheophorbide A (7) showing the strongest activity (IC50 4.49 µM). Subsequent in vivo testing in a Plasmodium berghei chemosuppression model showed that compound 7 significantly attenuated peripheral blood parasitemia, leading to 79% and 87% chemosuppression following oral doses at 10 and 20 mg/kg, respectively.


Assuntos
Antimaláricos , Clerodendrum , Malária , Parasitos , Animais , Malária/tratamento farmacológico , Malária/parasitologia , Plasmodium falciparum , Extratos Vegetais/química , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium berghei
5.
Planta Med ; 89(2): 208-217, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36170856

RESUMO

Four new furostanol saponins (1:  - 4: ) and a new pregane-type saponin (5: ) along with six known steroidal saponins (6:  - 11: ) were isolated from the rhizomes of Smilax china. The structures of 1:  - 5: were elucidated by extensive analysis of NMR and HR-ESI-MS data in addition to enzymatic hydrolysis and other chemical methods. Compounds 1, 4: , and 11: showed inhibitory activity against the expression of proinflammatory mediators, inducible nitric oxide synthase, interleukin-1ß, interleukin-6, and tumor necrosis factor-α in lipopolysaccharide-induced RAW264.7 cells. Compound 1: , at a concentration of 20 µM, decreased the production of inducible nitric oxide synthase, interleukin-1ß, interleukin-6, and tumor necrosis factor-α by 36, 62, 72, and 67%, respectively, which is comparable to that of the positive control dexamethasone.


Assuntos
Citocinas , Saponinas , Smilax , China , Citocinas/metabolismo , Interleucina-1beta , Interleucina-6 , Lipopolissacarídeos , Óxido Nítrico Sintase Tipo II , Rizoma/química , Saponinas/química , Smilax/química , Fator de Necrose Tumoral alfa , Animais , Camundongos , Células RAW 264.7
6.
Mar Drugs ; 21(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37103392

RESUMO

Human skin needs additional protection from damaging ultraviolet radiation (UVR: 280-400 nm). Harmful UVR exposure leads to DNA damage and the development of skin cancer. Available sunscreens offer chemical protection from detrimental sun radiation to a certain extent. However, many synthetic sunscreens do not provide sufficient UVR protection due to the lack of photostability of their UV-absorbing active ingredients and/or the lack of ability to prevent the formation of free radicals, inevitably leading to skin damage. In addition, synthetic sunscreens may negatively affect human skin, causing irritation, accelerating skin aging and even resulting in allergic reactions. Beyond the potential negative effect on human health, some synthetic sunscreens have been shown to have a harmful impact on the environment. Consequently, identifying photostable, biodegradable, non-toxic, and renewable natural UV filters is imperative to address human health needs and provide a sustainable environmental solution. In nature, marine, freshwater, and terrestrial organisms are protected from harmful UVR through several important photoprotective mechanisms, including the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). Beyond MAAs, several other promising, natural UV-absorbing products could be considered for the future development of natural sunscreens. This review investigates the damaging impact of UVR on human health and the necessity of using sunscreens for UV protection, specifically UV-absorbing natural products that are more environmentally friendly than synthetic UV filters. Critical challenges and limitations related to using MAAs in sunscreen formulations are also evaluated. Furthermore, we explain how the genetic diversity of MAA biosynthetic pathways may be linked to their bioactivities and assess MAAs' potential for applications in human health.


Assuntos
Aminoácidos , Neoplasias Cutâneas , Humanos , Aminoácidos/química , Raios Ultravioleta/efeitos adversos , Protetores Solares/química , Pele , Neoplasias Cutâneas/prevenção & controle
7.
Nat Prod Rep ; 39(1): 77-89, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34226909

RESUMO

Covering: up to June, 2020Tuberculosis (TB) continues to be a major disease with high mortality and morbidity globally. Drug resistance and long duration of treatment make antituberculosis drug discovery more challenging. In this review, we summarize recent advances on anti-TB natural products (NPs) and their potential molecular targets in cell wall synthesis, protein production, energy generation, nucleic acid synthesis and other emerging areas. We highlight compounds with activity against drug-resistant TB, and reveal several novel targets including Mtb biotin synthase, ATP synthase, 1,4-dihydroxy-2-naphthoate prenyltransferase and biofilms. These anti-TB NPs and their targets could facilitate target-based screening and accelerate TB drug discovery.


Assuntos
Antituberculosos/farmacologia , Produtos Biológicos/farmacologia , Descoberta de Drogas , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
8.
J Nat Prod ; 85(4): 899-909, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35212529

RESUMO

A pair of novel serratane-related triterpenoid epimers, phlegmacaritones A (1) and B (2), possessing an unprecedented 15,30-lactone-14,15-seco skeleton, six new serratane-type triterpenoids, phlegmanols G-L (3-5 and 14-16), and 16 known compounds were isolated from the whole plant of Phlegmariurus carinatus. The structures of the new metabolites were established on the basis of comprehensive spectroscopic data analysis and electronic circular dichroism calculations. A possible biosynthetic pathway for phlegmacaritones A (1) and B (2) was proposed. All compounds were submitted to cytological profiling on a cell line derived from a patient with Parkinson's disease. Phlegmacaritone B (2) induced a distinct phenotypic profile with alterations in α-tubulin, mitochondria, and autophagosomal and early endosomal features.


Assuntos
Lycopodiaceae , Triterpenos , Carbono/química , Humanos , Lactonas , Estrutura Molecular , Esqueleto , Triterpenos/química , Triterpenos/farmacologia
9.
J Nat Prod ; 84(3): 676-682, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33667101

RESUMO

Four new alkaloids, (R)-nomimantharine trifluoroacetate (2), 12-demethylphaeantharine trifluoroacetate (3), nominanthranal trifluoroacetate (4), and the enolic form of 1-hydroxy-6,7-dimethoxy-2-methylisoquinoline trifluoroacetate (5), together with the known dimeric alkaloid phaeantharine trifluoroacetate (1), have been isolated from the extract of the leaves of the rainforest tree Doryphora aromatica (Monimiaceae). The structures of these compounds were elucidated by HRMS and 1D and 2D NMR data. (R)-Nomimantharine trifluoroacetate (2) contains an ether linkage connecting a benzylisoquinoline unit with a tetrahydroisoquinoline, a novel class of dimeric alkaloid. The absolute configuration of (R)-nomimantharine trifluoroacetate (2) was established via electronic circular dichroism data. The compounds isolated were subjected to in vitro antimicrobial assays against a panel of pathogenic microorganisms, including Mycobacterium smegmatis, M. tuberculosis, Escherichia coli, Staphylococcus aureus (SA), and five clinical isolates of oxacillin/methicillin-resistant S. aureus (MRSA). Phaeantharine trifluoroacetate (1) and (R)-nomimantharine trifluoroacetate (2) showed moderate inhibitory activities against Mycobacteria and MRSA strains.


Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Monimiaceae/química , Alcaloides/isolamento & purificação , Antibacterianos/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Queensland
10.
Appl Microbiol Biotechnol ; 105(10): 3987-4003, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33937926

RESUMO

Meroterpenoids are a class of terpenoid-containing hybrid natural products with impressive structural architectures and remarkable pharmacological activities. Remarkable advances in enzymology and synthetic biology have greatly contributed to the elucidation of the molecular basis for their biosynthesis. Here, we review structurally unique meroterpenoids catalyzed by novel enzymes and unusual enzymatic reactions over the period of last 5 years. We also discuss recent progress on the biomimetic synthesis of chrome meroterpenoids and synthetic biology-driven biomanufacturing of tropolone sesquiterpenoids, merochlorins, and plant-derived meroterpenoid cannabinoids. In particular, we focus on the novel enzymes involved in the biosynthesis of polyketide-terpenoids, nonribosomal peptide-terpenoids, terpenoid alkaloids, and meroterpenoid with unique structures. The biological activities of these meroterpenoids are also discussed. The information reviewed here might provide useful clues and lay the foundation for developing new meroterpenoid-derived drugs. KEY POINTS: • Meroterpenoids possess intriguing structural features and relevant biological activities. • Novel enzymes are involved in the biosynthesis of meroterpenoids with unique structures. • Biomimetic synthesis and synthetic biology enable the construction and manufacturing of complex meroterpenoids.


Assuntos
Produtos Biológicos , Sesquiterpenos , Biomimética , Fungos , Terpenos
11.
Bioorg Med Chem ; 28(21): 115732, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065438

RESUMO

Cytological profiling (CP) assay against a human olfactory neuroshpere-derived (hONS) cell line using a library of traditional Chinese medicinal plant extracts gave indications that the ethanolic extract of Macleaya cordata (Willd) R. Br. elicited strong perturbations to various cellular components. Further chemical investigation of this extract resulted in the isolation of two new benzo[c]phenanthridine alkaloids, (6R)-10-methoxybocconoline (1) and 6-(1-hydroxyethyl)-10-methoxy-5,6-dihydrochelerythrine (2). Their planar structures were elucidated by extensive 1D and 2D NMR studies, together with MS data. The absolute configuration for position C-6 of 1 and relative configurations for position C-6 and C-1' of 2 were assigned by density functional theory (DFT) calculations of ECD and NMR data, respectively. Also isolated were fourteen known metabolites, including ten alkaloids (3-12) and four coumaroyl-containing compounds (13-16). Cytological profiling of the isolates against Parkinson's Disease (PD) patient-derived olfactory cells revealed bocconoline (3) and 6-(1-hydroxyethyl)-5,6-dihydrochelerythrine (4) significantly perturbated the features of cellular organelles including early endosomes, mitochondria and autophagosomes. Given that hONS cells from PD patients model some functional aspects of the disease, the results suggested that these phenotypic profiles may have a role in the mechanisms underlying PD and signified the efficacy of CP in finding potential chemical tools to study the biological pathways in PD.


Assuntos
Papaveraceae/química , Extratos Vegetais/química , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/farmacologia , Linhagem Celular , Dicroísmo Circular , Teoria da Densidade Funcional , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Conformação Molecular , Papaveraceae/metabolismo , Doença de Parkinson/patologia , Plantas Medicinais/química , Plantas Medicinais/metabolismo
12.
J Nat Prod ; 83(5): 1440-1452, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32372642

RESUMO

As part of a continuing research program aiming to identify chemical probes to interrogate Parkinson's disease (PD), we have investigated the Australian plants Gloriosa superba and Alangium villosum. The chemical investigations of G. superba resulted in the isolation of four new alkaloids, ß-lumicolchicosides A-C (1-3) and γ-lumicolchicoside A (4), together with four lumicolchicine derivatives (5-8) and six colchicine analogues (9-14) as known structures. The chemical investigations of A. villosum resulted in the isolation of four new benzoquinolizidine N-oxides, tubulosine Nß5-oxide (15), isotubulosine Nα5-oxide (16), 9-demethyltubulosine Nß5-oxide (17), and 9-demethylisotubulosine Nα5-oxide (18), together with five known benzoquinolizidine alkaloids (19-23). The chemical structures of the new compounds (1-4 and 15-18) were characterized unambiguously by extensive analysis of their NMR and MS data. Unbiased multidimensional profiling was used to investigate the phenotypic profiles of all of the metabolites. The results show that the lead probes have different effects on cellular organelles that are implicated in PD in patient-derived cells.


Assuntos
Alangiaceae/química , Alcaloides/química , Alcaloides/farmacologia , Antiparkinsonianos/química , Antiparkinsonianos/farmacologia , Colchicaceae/química , Austrália , Linhagem Celular , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Organelas/efeitos dos fármacos , Fenótipo , Folhas de Planta/química
13.
Appl Microbiol Biotechnol ; 104(9): 3835-3846, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32215711

RESUMO

Polyketide-terpenoid hybrid compounds are one of the largest families of meroterpenoids, with great potential for drug development for resistant pathogens. Genome sequence analysis of secondary metabolite gene clusters of a phytopathogenic fungus, Bipolaris sorokiniana 11134, revealed a type I polyketide gene cluster, consisting of highly reducing polyketide synthase, non-reducing polyketide synthase, and adjacent prenyltransferase. MS- and UV-guided isolations led to the isolation of ten meroterpenoids, including two new compounds: 19-dehydroxyl-3-epi-arthripenoid A (1) and 12-keto-cochlioquinone A (2). The structures of 1-10 were elucidated by the analysis of NMR and high-resolution electrospray ionization mass spectroscopy data. Compounds 5-8 and 10 showed moderate activity against common Staphylococcus aureus and methicillin-resistant S. aureus, with minimum inhibitory concentration (MIC) values of 12.5-100 µg/mL. Compound 5 also exhibited activity against four clinical resistant S. aureus strains and synergistic antifungal activity against Candida albicans with MIC values of 12.5-25 µg/mL. The biosynthetic gene cluster of the isolated compounds and their putative biosynthetic pathway are also proposed. KEY POINTS: • Ten meroterpenoids were identified from B. sorokiniana, including two new compounds. • Cochlioquinone B (5) showed activity against MRSA and synergistic activity against C. albicans. • The biosynthetic gene cluster and biosynthetic pathway of meroterpenoids are proposed. • Genome mining provided a new direction to uncover the diversity of meroterpenoids.


Assuntos
Antibacterianos/farmacologia , Bipolaris/química , Bipolaris/genética , Genoma Fúngico , Policetídeos/farmacologia , Terpenos/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Vias Biossintéticas/genética , Candida albicans/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Família Multigênica , Policetídeos/isolamento & purificação , Metabolismo Secundário , Staphylococcus aureus/efeitos dos fármacos , Terpenos/isolamento & purificação
14.
Mar Drugs ; 18(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640519

RESUMO

The marine-derived fungus Aspergillus fumigatus MF071, isolated from sediment collected from the Bohai Sea, China, yielded two new compounds 19S,20-epoxy-18-oxotryprostatin A (1) and 20-hydroxy-18-oxotryprostatin A (2), in addition to 28 known compounds (3-30). The chemical structures were established on the basis of 1D, 2D NMR and HRESIMS spectroscopic data. This is the first report on NMR data of monomethylsulochrin-4-sulphate (4) and pseurotin H (10) as naturally occurring compounds. Compounds 15, 16, 20, 23, and 30 displayed weak antibacterial activity (minimum inhibitory concentration: 100 µg/mL). Compounds 18 and 19 exhibited strong activity against S. aureus (minimum inhibitory concentration: 6.25 and 3.13 µg/mL, respectively) and E. coli (minimum inhibitory concentration: 6.25 and 3.13 µg/mL, respectively). A genomic data analysis revealed the putative biosynthetic gene clusters ftm for fumitremorgins, pso for pseurotins, fga for fumigaclavines, and hel for helvolinic acid. These putative biosynthetic gene clusters fundamentally underpinned the enzymatic and mechanistic function study for the biosynthesis of these compounds. The current study reported two new compounds and biosynthetic gene clusters of fumitremorgins, pseurotins, fumigaclavines and helvolinic acid from Aspergillus fumigatus MF071.


Assuntos
Antibacterianos/farmacologia , Aspergillus fumigatus/genética , Sedimentos Geológicos/microbiologia , Alcaloides Indólicos/farmacologia , Microbiologia do Solo , Animais , China , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Família Multigênica , Oceanos e Mares , Staphylococcus aureus/efeitos dos fármacos
15.
Mar Drugs ; 18(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150903

RESUMO

In recent years, there has been a revival of interest in phenotypic-based drug discovery (PDD) due to target-based drug discovery (TDD) falling below expectations. Both PDD and TDD have their unique advantages and should be used as complementary methods in drug discovery. The PhenoTarget approach combines the strengths of the PDD and TDD approaches. Phenotypic screening is conducted initially to detect cellular active components and the hits are then screened against a panel of putative targets. This PhenoTarget protocol can be equally applied to pure compound libraries as well as natural product fractions. Here we described the use of the PhenoTarget approach to identify an anti-tuberculosis lead compound. Fractions from Polycarpa aurata were identified with activity against Mycobacterium tuberculosis H37Rv. Native magnetic resonance mass spectrometry (MRMS) against a panel of 37 proteins from Mycobacterium proteomes showed that a fraction from a 95% ethanol re-extraction specifically formed a protein-ligand complex with Rv1466, a putative uncharacterized Mycobacterium tuberculosis protein. The natural product responsible was isolated and characterized to be polycarpine. The molecular weight of the ligand bound to Rv1466, 233 Da, was half the molecular weight of polycarpine less one proton, indicating that polycarpine formed a covalent bond with Rv1466.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Descoberta de Drogas/métodos , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Peso Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Fenótipo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteoma/efeitos dos fármacos
16.
Molecules ; 25(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455540

RESUMO

Elucidation of the mechanism of action of compounds with cellular bioactivity is important for progressing compounds into future drug development. In recent years, phenotype-based drug discovery has become the dominant approach to drug discovery over target-based drug discovery, which relies on the knowledge of a specific drug target of a disease. Still, when targeting an infectious disease via a high throughput phenotypic assay it is highly advantageous to identifying the compound's cellular activity. A fraction derived from the plant Polyalthia sp. showed activity against Mycobacterium tuberculosis at 62.5 µge/µL. A known compound, altholactone, was identified from this fraction that showed activity towards M. tuberculosis at an minimum inhibitory concentration (MIC) of 64 µM. Retrospective analysis of a target-based screen against a TB proteome panel using native mass spectrometry established that the active fraction was bound to the mycobacterial protein Rv1466 with an estimated pseudo-Kd of 42.0 ± 6.1 µM. Our findings established Rv1466 as the potential molecular target of altholactone, which is responsible for the observed in vivo toxicity towards M. tuberculosis.


Assuntos
Antituberculosos/farmacologia , Produtos Biológicos/farmacologia , Polyalthia/química , Tuberculose/tratamento farmacológico , Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Produtos Biológicos/química , Descoberta de Drogas , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteoma/genética , Tuberculose/microbiologia
17.
Anal Bioanal Chem ; 411(22): 5785-5797, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31236650

RESUMO

Accessing the rich source of compounds from natural herbs for use in the pharmaceutical industry using conventional bioassay-based screening platforms has low efficiency and is cost-prohibitive. In this study, we developed a new method involving traditional Chinese medicine (TCM) molecular networking and virtual screening coupled with affinity mass spectrometry (MN/VS-AM) for the efficient discovery of herb-derived ligands. The in silico MS/MS fragmentation database (ISDB) generated by molecular networking of TCM can rapidly identify compounds in complex herb extracts and perform compound activity mapping. Additionally, the pre-virtual screening conveniently includes candidate herbs with potential bioactivity, while affinity MS screening completely eliminates the requirement for a tedious pure compound preparation at the initial screening phase. After applying this approach, two types of compounds, isoamylene flavanonols and 20(s)-protopanoxadio saponins, which were confirmed to interact with the small GTPase of Ras, were successfully identified from a dozen anti-cancer TCM herbs. The results demonstrate that the modified screening strategy dramatically improved the accuracy and throughput sensitivity of ligand screening from herbal extracts. Graphical abstract.


Assuntos
Plantas Medicinais/química , Espectrometria de Massas em Tandem/métodos , Simulação por Computador , Medicina Herbária , Ligantes
18.
Appl Microbiol Biotechnol ; 103(13): 5167-5181, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31001746

RESUMO

Halogen substituents are important for biological activity in many compounds. Genome-based mining of halogenase along with its biosynthetic gene cluster provided an efficient approach for the discovery of naturally occurring organohalogen compounds. Analysis of the genome sequence of a phytopathogenic fungus Bipolaris sorokiniana 11134 revealed a polyketide gene cluster adjacent to a flavin-dependent halogenase capable of encoding halogenated polyketides, which are rarely reported in phytopathogenic fungi. Furthermore, MS- and UV-guided isolation and purification led to the identification of five chlorine-containing natural products together with seven other chromones and xanthones. Two of the chlorinated compounds and four chromones are new compounds. Their structures were elucidated by NMR spectroscopic analysis and HRESIMS data. The biosynthetic gene clusters of isolated compounds and their putative biosynthetic pathway are also proposed. One new chlorinated compound showed activity against Staphylococcus aureus, methicillin-resistant S. aureus, and three clinical-resistant S. aureus strains with a shared minimum inhibitory concentration (MIC) of 12.5 µg/mL. Genome-based mining of halogenases combined with high-resolution MS- and UV-guided identification provides an efficient approach to discover new halogenated natural products from microorganisms.


Assuntos
Ascomicetos/química , Ascomicetos/genética , Cromonas/química , Genoma Fúngico , Xantonas/química , Vias Biossintéticas , Genômica , Halogenação , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Família Multigênica , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
19.
Cell Mol Life Sci ; 74(5): 777-801, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27622244

RESUMO

Chemotherapy is one of the most effective and broadly used approaches for cancer management and many modern regimes can eliminate the bulk of the cancer cells. However, recurrence and metastasis still remain a major obstacle leading to the failure of systemic cancer treatments. Therefore, to improve the long-term eradication of cancer, the cellular and molecular pathways that provide targets which play crucial roles in drug resistance should be identified and characterised. Multidrug resistance (MDR) and the existence of tumor-initiating cells, also referred to as cancer stem cells (CSCs), are two major contributors to the failure of chemotherapy. MDR describes cancer cells that become resistant to structurally and functionally unrelated anti-cancer agents. CSCs are a small population of cells within cancer cells with the capacity of self-renewal, tumor metastasis, and cell differentiation. CSCs are also believed to be associated with chemoresistance. Thus, MDR and CSCs are the greatest challenges for cancer chemotherapy. A significant effort has been made to identify agents that specifically target MDR cells and CSCs. Consequently, some agents derived from nature have been developed with a view that they may overcome MDR and/or target CSCs. In this review, natural products-targeting MDR cancer cells and CSCs are summarized and clustered by their targets in different signaling pathways.


Assuntos
Produtos Biológicos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/patologia , Animais , Apoptose/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Nat Prod Rep ; 34(6): 571-584, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28357435

RESUMO

Covering: 1877 to 2017The ancestors of present-day crinoids are thought to be some of the earliest echinoderms, with fossil records dating back to the early Paleozoic Era (Ordovician Period, 505-440 million years ago). Their bright colours have been noted for over 100 years, and are attributed to a series of polyketide-derived pigments. Some crinoid metabolites display a range of biological activities, including cytotoxicity and fish anti-feedant activity. This review is divided into two parts. Part 1 is encyclopedic in scope, collating information on the >50 known metabolites isolated from crinoids, including their taxonomic source, collection location, chemical structure and biological activities. During the compilation of this data, two distinct themes emerged. Firstly, there is little variation in the class of metabolites produced by crinoids, irrespective of their species or geographic origin. Secondly, the complete and unambiguous assignment of crinoid metabolite structures has been, in many cases, a difficult task. This has been due to a lack of spectroscopic technology available in the past, the presence of proton-poor chemical structures, or both. Thus, Part 2 provides a critical discussion of crinoid chemistry, including the biosynthetic origin of crinoid pigments, as well as the pitfalls and solutions experienced by ourselves and other chemists when elucidating the chemical structures of crinoid metabolites.


Assuntos
Química , Equinodermos , Fósseis , Animais , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA