Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 56(18): 11030-11042, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28841309

RESUMO

This work describes a series of iron(II) phosphanylphosphido complexes. These compounds were obtained by reacting lithiated diphosphanes R2PP(SiMe3)Li (R = t-Bu, i-Pr) with an iron(II) ß-diketiminate complex, [LFe(µ2-Cl)2Li(DME)2] (1), where DME = 1,2-dimethoxyethane and L = Dippnacnac (ß-diketiminate). While the reaction of 1 with t-Bu2PP(SiMe3)Li yields [LFe(η1-Me3SiPP-t-Bu2)] (2), that of 1 with equimolar amounts of i-Pr2PP(SiMe3)Li, in DME, leads to [LFe(η2-i-Pr2PPSiMe3)] (3). In contrast, the reaction of 1 with (i-Pr2N)2PP(SiMe3)Li provides not an iron-containing complex but 1-[(diisopropylamino)phosphine]-2,4-bis(diisopropylamino)-3-(trimethylsilyl)tetraphosphetane (4). The structures of 2-4 were determined using diffractometry. Thus, 2 exhibits a three-coordinate iron site and 3 a four-coordinate iron site. The increase in the coordination number is induced by the change from an anticlinal to a synclinal conformation of the phoshpanylphosphido ligands. The electronic structures of 2 and 3 were assessed through a combined field-dependent 57Fe Mössbauer and high-frequency and -field electron paramagnetic resonance spectroscopic investigation in conjunction with analysis of their magnetic susceptibility and magnetization data. These studies revealed two high-spin iron(II) sites with S = 2 ground states that have different properties. While 2 exhibits a zero-field splitting described by a positive D parameter (D = +17.4 cm-1; E/D = 0.11) for 3, this parameter is negative [D = -25(5) cm-1; E/D = 0.15(5)]. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations provide insights into the origin of these differences and allow us to rationalize the fine and hyperfine structure parameters of 2 and 3. Thus, for 2, the spin-orbit coupling mixes a z2-type ground state with two low-lying {xz/yz} orbital states. These interactions lead to an easy plane of magnetization, which is essentially parallel to the plane defined by the N-Fe-N atoms. For 3, we find a yz-type ground state that is strongly mixed with a low-lying z2-type orbital state. In this case, the spin-orbit interaction leads to a partial unquenching of the orbital momentum along the x axis, that is, to an easy axis of magnetization oriented roughly along the Fe-P bond of the phosphido moiety.

2.
Biomed Chromatogr ; 31(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27756101

RESUMO

Nineteen new complexes of carboxylates with transition and rare elements as central ions and their ligands were characterized by chromatographic analyses. The parameter of relative lipophilicity (RM0 ) of the tested compounds was determined experimentally by the reversed-phase high-performance thin layer chromatography method with mixtures of various organic modifiers (acetonitrile, acetone, dioxane) and water as a mobile phase. The extrapolated RM0 values were compared with the logP values calculated from the molecular structures of tested solutes. Similarities between the lipophilicity indices were analysed by principal component analysis and linear regression. Thin-layer chromatography combined with a magnetic field has been proposed as a complementary method for determination of lipophilicity of the investigated compounds. The chromatograms in the field and outside it were developed simultaneously in two identical chromatographic chambers. One of them was placed in the external magnetic field of 0.4 T inductivity. We proved that chelation causes a drastic change in compound lipophilicity, but all complexes did not exhibit enhanced activity as compared with the parent ligand. Also in the magnetic field the retention of some complexes changed, which means that the presence of the field influences the physicochemical properties of the compounds and their interactions with the stationary phase.


Assuntos
Cromatografia em Camada Fina/métodos , Complexos de Coordenação/química , Cromatografia de Fase Reversa/métodos , Complexos de Coordenação/análise , Interações Hidrofóbicas e Hidrofílicas , Magnetismo , Metais/química , Estrutura Molecular
3.
Chromatographia ; 77: 1103-1112, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25089051

RESUMO

The properties of 12 new heterodi- and heterotrinuclear complexes having general formulae [Cu2Ln(L)2(NO3)(H2O)2](NO3)2·3H2O [where Ln = Pr (1), Nd (2), Sm (3) and Eu (4)], and [CuLn(L)(NO3)2(H2O)3MeOH]NO3·MeOH [where Ln = Gd (5), Tb (6), Dy (7), Ho (8), Ef (9), Tm (10), Yb (11) and Lu (12)], and their main ligand [L = C19H18N2O4Br2 = N,N'-bis(5-bromo-3-methoxysalicylidene)propylene-1,3-diamine] have been characterized by chromatographic analyses. The parameter of relative lipophilicity (RM0) of the tested compounds was determined experimentally by reversed-phase high-performance thin layer chromatography method with mixtures of methanol and water as a mobile phase. We also described interactions between chromatographed substances and various surfaces (silica-SiO2 and modified by hydrocarbon chains-RP-2, RP-8, RP-18 phases). This study also investigates the effect of pH of the mobile phase on the retention on the polar stationary phase. Thin layer chromatography combined with magnetic and electric field has been proposed as a complementary method for the determination of physicochemical properties of the investigated compounds. The chromatograms in the field and outside of it were developed simultaneously in three identical chromatographic chambers. One of them was placed in external magnetic field of 0.4 T inductivity, and the second in external electrical field. In magnetic and electric fields, retention of some complexes changed, which indicated that the presence of these fields influenced physicochemical properties of the compounds and their interactions with the stationary phase.

4.
J Inorg Biochem ; 145: 94-100, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25660488

RESUMO

The new Cu(II) complexes with 6-acetyl-7-hydroxy-4-methylcoumarin (HL1) and 8-acetyl-7-hydroxy-4-methylcoumarin (HL2) have been obtained by the electrochemical method. The density functional theory calculations and X-ray absorption spectroscopy techniques have been used to geometrically describe a series of new compounds. The studies have been focused on the coordination mode of the hydroxy ligands to the metallic centre. The complexes, Cu(HL1)2 and Cu(HL2)2⋅0.5H2O, have flat square geometry with oxygen atoms in the first coordination sphere. Two bidentate anionic coumarins are bonded to the metal cation via the acetyl and deprotonated hydroxyl O atoms. Biological activity, including microbiological and cytotoxic, has been evaluated and found to be enhanced in comparison with the parent ligands. Moreover, the Cu(II) complex with 8-acetyl-7-hydroxy-4-methylcoumarin shows similar antifungal activity as commercially used fluconazole.


Assuntos
Cobre/química , Himecromona/química , Himecromona/farmacologia , Células 3T3 , Animais , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Himecromona/síntese química , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
5.
Dalton Trans ; 43(33): 12766-75, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25014574

RESUMO

Four heteroleptic complexes of nickel(ii), cobalt(ii) and zinc(ii), containing a monodentate silanethiolate ligand derived from tris(2,6-diisopropylphenoxy)silanethiol (TDST), were prepared and characterized. Nickel(ii) and cobalt(ii) complexes of the formula M(NH3)2(TDST)2 (M = Ni(ii) complex , M = Co(ii) complex ) were obtained from the respective chlorides. Zinc complexes of the general formula Zn(acac)(TDST)(L), where L = EtOH (complex ) or H2O (complex ), were obtained from zinc acetylacetonate. A single-crystal X-ray structural analysis revealed that all crystalline products are solvent adducts. The geometries of ligands in the complexes are typical: distorted tetrahedral in zinc and cobalt(ii) complexes and square planar in nickel(ii) compounds. Magnetic studies performed for Ni(ii) and Co(ii) compounds confirmed the diamagnetic character of the first complex and high-spin paramagnetic configuration of the latter. Nickel(ii) and cobalt(ii) complexes were additionally characterized by UV-Vis and IR spectroscopy. IR bands for ligands in the complexes were assigned with the help of the DFT vibrational frequency calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA