Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 601(7894): 588-594, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937049

RESUMO

Present-day people from England and Wales have more ancestry derived from early European farmers (EEF) than did people of the Early Bronze Age1. To understand this, here we generated genome-wide data from 793 individuals, increasing data from the Middle to the Late Bronze Age and Iron Age in Britain by 12-fold, and western and central Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of people of England and Wales from the Iron Age, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to the Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2-6. There was comparatively less gene flow from continental Europe during the Iron Age, and the independent genetic trajectory in Britain is also reflected in the rise of the allele conferring lactase persistence to approximately 50% by this time compared to approximately 7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.


Assuntos
Arqueologia , Fazendeiros , Europa (Continente) , França , Genoma Humano/genética , Migração Humana/história , Humanos , Lactente , Reino Unido
2.
Nature ; 607(7918): 313-320, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768506

RESUMO

The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.


Assuntos
Cães , Genoma , Genômica , Filogenia , Lobos , África , Animais , DNA Antigo/análise , Cães/genética , Domesticação , Europa (Continente) , Genoma/genética , História Antiga , Oriente Médio , Mutação , América do Norte , Seleção Genética , Sibéria , Proteínas Supressoras de Tumor/genética , Lobos/classificação , Lobos/genética
3.
Nature ; 590(7844): 103-110, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33361817

RESUMO

Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1-3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.


Assuntos
Arqueologia , Genética Populacional , Genoma Humano/genética , Migração Humana/história , Ilhas , Dinâmica Populacional/história , Arqueologia/ética , Região do Caribe , América Central/etnologia , Cerâmica/história , Genética Populacional/ética , Mapeamento Geográfico , Haplótipos , História Antiga , Humanos , Masculino , Densidade Demográfica , América do Sul/etnologia
4.
Genome Res ; 33(4): 622-631, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37072186

RESUMO

Density separation is a process routinely used to segregate minerals, organic matter, and even microplastics, from soils and sediments. Here we apply density separation to archaeological bone powders before DNA extraction to increase endogenous DNA recovery relative to a standard control extraction of the same powders. Using nontoxic heavy liquid solutions, we separated powders from the petrous bones of 10 individuals of similar archaeological preservation into eight density intervals (2.15 to 2.45 g/cm3, in 0.05 increments). We found that the 2.30 to 2.35 g/cm3 and 2.35 to 2.40 g/cm3 intervals yielded up to 5.28-fold more endogenous unique DNA than the corresponding standard extraction (and up to 8.53-fold before duplicate read removal), while maintaining signals of ancient DNA authenticity and not reducing library complexity. Although small 0.05 g/cm3 intervals may maximally optimize yields, a single separation to remove materials with a density above 2.40 g/cm3 yielded up to 2.57-fold more endogenous DNA on average, which enables the simultaneous separation of samples that vary in preservation or in the type of material analyzed. While requiring no new ancient DNA laboratory equipment and fewer than 30 min of extra laboratory work, the implementation of density separation before DNA extraction can substantially boost endogenous DNA yields without decreasing library complexity. Although subsequent studies are required, we present theoretical and practical foundations that may prove useful when applied to other ancient DNA substrates such as teeth, other bones, and sediments.


Assuntos
DNA Antigo , Osso Petroso , Humanos , Pós , Plásticos , DNA/genética
5.
Genome Res ; 31(3): 472-483, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33579752

RESUMO

Ancient DNA sampling methods-although optimized for efficient DNA extraction-are destructive, relying on drilling or cutting and powdering (parts of) bones and teeth. As the field of ancient DNA has grown, so have concerns about the impact of destructive sampling of the skeletal remains from which ancient DNA is obtained. Due to a particularly high concentration of endogenous DNA, the cementum of tooth roots is often targeted for ancient DNA sampling, but destructive sampling methods of the cementum often result in the loss of at least one entire root. Here, we present a minimally destructive method for extracting ancient DNA from dental cementum present on the surface of tooth roots. This method does not require destructive drilling or grinding, and, following extraction, the tooth remains safe to handle and suitable for most morphological studies, as well as other biochemical studies, such as radiocarbon dating. We extracted and sequenced ancient DNA from 30 teeth (and nine corresponding petrous bones) using this minimally destructive extraction method in addition to a typical tooth sampling method. We find that the minimally destructive method can provide ancient DNA that is of comparable quality to extracts produced from teeth that have undergone destructive sampling processes. Further, we find that a rigorous cleaning of the tooth surface combining diluted bleach and UV light irradiation seems sufficient to minimize external contaminants usually removed through the physical removal of a superficial layer when sampling through regular powdering methods.


Assuntos
DNA Antigo/isolamento & purificação , Cemento Dentário/química , Dente/química , Humanos , Masculino , Dente/anatomia & histologia
6.
Nature ; 548(7666): 214-218, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28783727

RESUMO

The origins of the Bronze Age Minoan and Mycenaean cultures have puzzled archaeologists for more than a century. We have assembled genome-wide data from 19 ancient individuals, including Minoans from Crete, Mycenaeans from mainland Greece, and their eastern neighbours from southwestern Anatolia. Here we show that Minoans and Mycenaeans were genetically similar, having at least three-quarters of their ancestry from the first Neolithic farmers of western Anatolia and the Aegean, and most of the remainder from ancient populations related to those of the Caucasus and Iran. However, the Mycenaeans differed from Minoans in deriving additional ancestry from an ultimate source related to the hunter-gatherers of eastern Europe and Siberia, introduced via a proximal source related to the inhabitants of either the Eurasian steppe or Armenia. Modern Greeks resemble the Mycenaeans, but with some additional dilution of the Early Neolithic ancestry. Our results support the idea of continuity but not isolation in the history of populations of the Aegean, before and after the time of its earliest civilizations.


Assuntos
Etnicidade/genética , Filogenia , Cromossomos Humanos X/genética , Etnicidade/história , Feminino , Grécia , História Antiga , Migração Humana/história , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
7.
Sci Rep ; 12(1): 7242, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508651

RESUMO

The transition to agriculture occurred relatively late in Eastern Europe, leading researchers to debate whether it was a gradual, interactive process or a colonisation event. In the forest and forest-steppe regions of Ukraine, farming appeared during the fifth millennium BCE, associated with the Cucuteni-Trypillia cultural complex (CTCC, ~ 5000-3000 BCE). Across Europe, the Neolithisation process was highly variable across space and over time. Here, we investigate the population dynamics of early agriculturalists from the eastern forest-steppe region based on the analyses of 20 ancient genomes from the site of Verteba Cave (3935-825 cal BCE). Results reveal that the CTCC individuals' ancestry is related to both western hunter-gatherers and Near Eastern farmers, has no local ancestry associated with Ukrainian Neolithic hunter-gatherers and has steppe ancestry. An Early Bronze Age individual has an ancestry profile related to the Yamnaya expansions but with 20% of ancestry related to the other Trypillian individuals, which suggests admixture between the Trypillians and the incoming populations carrying steppe-related ancestry. A Late Bronze Age individual dated to 980-825 cal BCE has a genetic profile indicating affinity to Beaker-related populations, detected close to 1000 years after the end of the Bell Beaker phenomenon during the third millennium BCE.


Assuntos
DNA Antigo , Migração Humana , Agricultura , Europa (Continente) , Genoma Humano , História Antiga , Humanos , Ucrânia
8.
Curr Biol ; 32(15): 3232-3244.e6, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732180

RESUMO

The genetic history of prehistoric and protohistoric Korean populations is not well understood because only a small number of ancient genomes are available. Here, we report the first paleogenomic data from the Korean Three Kingdoms period, a crucial point in the cultural and historic formation of Korea. These data comprise eight shotgun-sequenced genomes from ancient Korea (0.7×-6.1× coverage). They were derived from two archeological sites in Gimhae: the Yuha-ri shell mound and the Daesung-dong tumuli, the latter being the most important funerary complex of the Gaya confederacy. All individuals are from between the 4th and 5th century CE and are best modeled as an admixture between a northern China Bronze Age genetic source and a source of Jomon-related ancestry that shares similarities with the present-day genomes from Japan. The observed substructure and proportion of Jomon-related ancestry suggest the presence of two genetic groups within the population and diversity among the Gaya population. We could not correlate the genomic differences between these two groups with either social status or sex. All the ancient individuals' genomic profiles, including phenotypically relevant SNPs associated with hair and eye color, facial morphology, and myopia, imply strong genetic and phenotypic continuity with modern Koreans for the last 1,700 years.


Assuntos
Povo Asiático , Etnicidade , Arqueologia , Povo Asiático/genética , Genoma , História Antiga , Humanos , Polimorfismo de Nucleotídeo Único
9.
Sci Rep ; 11(1): 21262, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711884

RESUMO

Estimation of genetically related individuals is playing an increasingly important role in the ancient DNA field. In recent years, the numbers of sequenced individuals from single sites have been increasing, reflecting a growing interest in understanding the familial and social organisation of ancient populations. Although a few different methods have been specifically developed for ancient DNA, namely to tackle issues such as low-coverage homozygous data, they require a 0.1-1× minimum average genomic coverage per analysed pair of individuals. Here we present an updated version of a method that enables estimates of 1st and 2nd-degrees of relatedness with as little as 0.026× average coverage, or around 18,000 SNPs from 1.3 million aligned reads per sample with average length of 62 bp-four times less data than 0.1× coverage at similar read lengths. By using simulated data to estimate false positive error rates, we further show that a threshold even as low as 0.012×, or around 4000 SNPs from 600,000 reads, will always show 1st-degree relationships as related. Lastly, by applying this method to published data, we are able to identify previously undocumented relationships using individuals that had been excluded from prior kinship analysis due to their very low coverage. This methodological improvement has the potential to enable relatedness estimation on ancient whole genome shotgun data during routine low-coverage screening, and therefore improve project management when decisions need to be made on which individuals are to be further sequenced.


Assuntos
Alelos , DNA Antigo , Genoma Humano , Genômica , Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Genômica/métodos , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
10.
Curr Biol ; 31(16): 3564-3574.e9, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34256019

RESUMO

Cave sediments have been shown to preserve ancient DNA but so far have not yielded the genome-scale information of skeletal remains. We retrieved and analyzed human and mammalian nuclear and mitochondrial environmental "shotgun" genomes from a single 25,000-year-old Upper Paleolithic sediment sample from Satsurblia cave, western Georgia:first, a human environmental genome with substantial basal Eurasian ancestry, which was an ancestral component of the majority of post-Ice Age people in the Near East, North Africa, and parts of Europe; second, a wolf environmental genome that is basal to extant Eurasian wolves and dogs and represents a previously unknown, likely extinct, Caucasian lineage; and third, a European bison environmental genome that is basal to present-day populations, suggesting that population structure has been substantially reshaped since the Last Glacial Maximum. Our results provide new insights into the Late Pleistocene genetic histories of these three species and demonstrate that direct shotgun sequencing of sediment DNA, without target enrichment methods, can yield genome-wide data informative of ancestry and phylogenetic relationships.


Assuntos
Bison , DNA Antigo , Genoma Mitocondrial , Lobos , Animais , Bison/genética , DNA Mitocondrial/genética , República da Geórgia , Humanos , Filogenia , Lobos/genética
11.
Nat Commun ; 12(1): 7283, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907168

RESUMO

Relatively little is known about Nubia's genetic landscape prior to the influence of the Islamic migrations that began in the late 1st millennium CE. Here, we increase the number of ancient individuals with genome-level data from the Nile Valley from three to 69, reporting data for 66 individuals from two cemeteries at the Christian Period (~650-1000 CE) site of Kulubnarti, where multiple lines of evidence suggest social stratification. The Kulubnarti Nubians had ~43% Nilotic-related ancestry (individual variation between ~36-54%) with the remaining ancestry consistent with being  introduced through Egypt and ultimately deriving from an ancestry pool like that found in the Bronze and Iron Age Levant. The Kulubnarti gene pool - shaped over a millennium - harbors disproportionately female-associated West Eurasian-related ancestry. Genetic similarity among individuals from the two cemeteries supports a hypothesis of social division without genetic distinction. Seven pairs of inter-cemetery relatives suggest fluidity between cemetery groups. Present-day Nubians are not directly descended from the Kulubnarti Nubians, attesting to additional genetic input since the Christian Period.


Assuntos
Status Social , Egito , Feminino , Fósseis , Pool Gênico , Deriva Genética , Variação Genética , Genética Populacional , Genoma Humano/genética , História Antiga , Humanos , Masculino , Caracteres Sexuais , Sudão
12.
Nat Ecol Evol ; 4(3): 334-345, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094539

RESUMO

Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 BC, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BC. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 BC) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 BC, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium BC, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island's early farmers until the first millennium BC, with the exception of an outlier from the third millennium BC, who had primarily North African ancestry and who-along with an approximately contemporary Iberian-documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium BC and, at present, no more than 56-62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.


Assuntos
Agricultura , DNA Antigo , Estudo de Associação Genômica Ampla , África , Antropologia , Emigração e Imigração , Europa (Continente) , Humanos , Irã (Geográfico) , Ilhas , Sicília , Espanha
14.
Nat Protoc ; 14(4): 1194-1205, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30842617

RESUMO

The cortical bone that forms the structure of the cochlea, part of the osseous labyrinth of the inner ear, is now one of the most frequently used skeletal elements in analyses of human ancient DNA. However, there is currently no published, standardized method for its sampling. This protocol describes the preparation of bone powder from the cochlea of fragmented skulls in which the petrous pyramid of the temporal bone is accessible. Using a systematic process of bone removal based on distinct anatomical landmarks and the identification of relevant morphological features, a petrous pyramid is cleaned with a sandblaster, and the cochlea is located, isolated, and reduced to a homogeneous bone powder. All steps are carried out in dedicated ancient DNA facilities, thus reducing the introduction of contamination. This protocol requires an understanding of ancient DNA clean-room procedures and basic knowledge of petrous pyramid anatomy. In 50-65 min, it results in bone powder with endogenous DNA yields that can exceed those from teeth and other bones by up to two orders of magnitude. Compared with drilling methods, this method facilitates a more precise targeting of the cochlea, allows the user to visually inspect the cochlea and remove any residual sediment before the generation of bone powder, and confines the damage to the inner ear region and surface of the petrous portion of fragmentary crania.


Assuntos
Cóclea/química , DNA Antigo/análise , Extração Líquido-Líquido/métodos , Osso Petroso/química , Cóclea/anatomia & histologia , DNA Antigo/isolamento & purificação , Biblioteca Gênica , História Antiga , Humanos , Osso Petroso/anatomia & histologia , Pós , Análise de Sequência de DNA/métodos
15.
Sci Rep ; 9(1): 8226, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160682

RESUMO

The acquisition of biological information and assessment of the most probable geographic origin of unidentified individuals for obtaining positive identification is central in forensic sciences. Identification based on forensic DNA, however, varies greatly in relation to degradation of DNA. Our primary aim is to assess the applicability of a petrous bone sampling method in combination with Next Generation Sequencing to evaluate the quality and quantity of DNA in taphonomically degraded petrous bones from forensic and cemetery cases. A related aim is to analyse the genomic data to obtain the molecular sex of each individual, and their most probable geographic origin. Six of seven subjects were previously identified and used for comparison with the results. To analyse their probable geographic origin, samples were genotyped for the 627.719 SNP positions. Results show that the inner ear cochlear region of the petrous bone provides good percentages of endogenous DNA (14.61-66.89%), even in the case of burnt bodies. All comparisons between forensic records and genetic results agree (sex) and are compatible (geographic origin). The application of the proposed methodology may be a powerful tool for use in forensic scenarios, ranging from missing persons to unidentified migrants who perish when crossing borders.


Assuntos
DNA/análise , Genética Forense , Genoma Humano , Geografia , Osso Petroso/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Análise de Componente Principal , Crânio/metabolismo , Temperatura
16.
Science ; 366(6466): 708-714, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31699931

RESUMO

Ancient Rome was the capital of an empire of ~70 million inhabitants, but little is known about the genetics of ancient Romans. Here we present 127 genomes from 29 archaeological sites in and around Rome, spanning the past 12,000 years. We observe two major prehistoric ancestry transitions: one with the introduction of farming and another prior to the Iron Age. By the founding of Rome, the genetic composition of the region approximated that of modern Mediterranean populations. During the Imperial period, Rome's population received net immigration from the Near East, followed by an increase in genetic contributions from Europe. These ancestry shifts mirrored the geopolitical affiliations of Rome and were accompanied by marked interindividual diversity, reflecting gene flow from across the Mediterranean, Europe, and North Africa.


Assuntos
Emigração e Imigração/história , Fluxo Gênico , África do Norte/etnologia , Genoma Humano , História Antiga , Humanos , Região do Mediterrâneo , Oriente Médio/etnologia , Cidade de Roma
17.
Biotechniques ; 62(6): 283-289, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28625158

RESUMO

Ancient DNA (aDNA) research involves invasive and destructive sampling procedures that are often incompatible with anthropological, anatomical, and bioarcheological analyses requiring intact skeletal remains. The osseous labyrinth inside the petrous bone has been shown to yield higher amounts of endogenous DNA than any other skeletal element; however, accessing this labyrinth in cases of a complete or reconstructed skull involves causing major structural damage to the cranial vault or base. Here, we describe a novel cranial base drilling method (CBDM) for accessing the osseous labyrinth from the cranial base that prevents damaging the surrounding cranial features, making it highly complementary to morphological analyses. We assessed this method by comparing the aDNA results from one petrous bone processed using our novel method to its pair, which was processed using established protocols for sampling disarticulated petrous bones. We show a decrease in endogenous DNA and molecular copy numbers when the drilling method is used; however, we also show that this method produces more endogenous DNA and higher copy numbers than any postcranial bone. Our results demonstrate that this minimally-invasive method reduces the loss of genetic data associated with the use of other skeletal elements and enables the combined craniometric and genetic study of individuals with archeological, cultural, and evolutionary value.


Assuntos
DNA Antigo/análise , Osso Petroso/química , Antropologia/métodos , Biblioteca Gênica , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Procedimentos Ortopédicos/métodos , Osso Petroso/anatomia & histologia , Osso Petroso/cirurgia , Análise de Sequência de DNA/métodos , Crânio/anatomia & histologia , Crânio/cirurgia , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA