Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Chem Biol Interact ; 351: 109743, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34774840

RESUMO

Cannabidiol (CBD) is a natural cannabinoid present in the Cannabis sativa plant, widely prescribed as an anticonvulsant drug, especially for pediatric use. However, its effects on male reproduction are still little investigated. Therefore, the present study assessed the effects of CBD on the spermatogenesis and sperm quality. For this, twenty-one-day-old Swiss mice received CBD for 34 consecutive days by gavage at doses of either 15 or 30 mg/kg. Chronic exposure to CBD decreased the frequency of stages VII-VIII and XII of spermatogenesis and an increase in the frequency of stage IX were noted. Furthermore, the seminiferous epithelium height reduced at stage IX and increased at stage XII in both CBD-treated groups. There was a significant rise of sperm DNA damage, while no genotoxic effects were observed in leukocytes. The activities of superoxide dismutase and catalase decreased, while malondialdehyde levels increased in the sperm of mice treated with a higher dose of CBD. Mice exposed to 30 mg/kg of CBD showed a reduction in the mobile spermatozoa percentage and in curvilinear velocity, while straight line and average path velocity decreased in both treated groups. The number of acrosome-intact spermatozoa declined in the CBD 30 group, and the number of abnormal acrosomes raised in both CBD groups. On the other hand, the weight of reproductive organs, sperm count, and hormone levels were not affected by CBD treatment. These findings show that dysregulation of the endocannabinoid system by CBD can reduce sperm quality. The mechanisms responsible may be associated with disorders during spermatogenesis, especially during the final stages of nuclear remodelling and assembly of acrosome. However, changes in mitochondrial function, as well as the reduction on the antioxidant enzyme activities during epididymal transit, at least partly, may also be involved.


Assuntos
Canabidiol/toxicidade , Espermatozoides/efeitos dos fármacos , Acrossomo/efeitos dos fármacos , Animais , Dano ao DNA/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatozoides/patologia
2.
Toxicol Rep ; 2: 1482-1488, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28962491

RESUMO

Biological, and particularly antimicrobial, activities have been demonstrated for the essential oil of propolis samples worlwide, yet their mutagenic effects remain unknown. To correlate antimicrobial effects with mutagenic risks, the present study evaluated the antifungal and antibacterial activities of the essential oil obtained from brown propolis collected from the Cerrado biome in Midwest Brazil (EOP), testing it against nine pathogenic microorganisms. Evaluation of mutagenic potential was based on the somatic mutation and recombination test (SMART) performed on wing cells of standard (ST) and high-bioactivation (HB) crosses of Drosophila melanogaster. EOP was extracted by hydrodistillation, and sesquiterpenes were characterized by GCâ¿¿MS as its major constituents. The crude oil proved active against Cryptococcus neoformans and Enterococcus faecalis, as did two of its major constituents, spathulenol and (E)-nerolidol â¿¿ the latter being also active against Staphylococcus aureus â¿¿ isolated using chromatographic procedures. No significant increase in the number of somatic mutations was observed in the offspring of ST or HB crosses â¿¿ the latter exhibiting enhanced levels of metabolizing enzymes of the cytochrome P450 type â¿¿ treated with 0.05%, 0.1%, and 0.2% EOP. These findings revealed no mutagenic activity of EOP, even when tested against the HB strain, and demonstrated that its antimicrobial activities are not associated with DNA damage induction (investigated with SMART), suggesting the potential of EOP as a natural preservative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA