RESUMO
Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.
Assuntos
COVID-19/patologia , Interferons/metabolismo , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Fatores Etários , Envelhecimento/patologia , COVID-19/genética , COVID-19/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Humanos , Interferons/genética , Leucócitos/patologia , Leucócitos/virologia , Pulmão/patologia , Pulmão/virologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Carga ViralRESUMO
Since early May 2022, some monkeypox virus (MPXV) infections have been reported from countries where the disease is not endemic. Within 2 months, the number of patients has increased extensively, becoming the most considerable MPXV outbreak described. Smallpox vaccines demonstrated high efficacy against MPXVs in the past and are considered a crucial outbreak control measure. However, viruses isolated during the current outbreak carry distinct genetic variations, and the cross-neutralizing capability of antibodies remains to be assessed. Here we report that serum antibodies elicited by first-generation smallpox vaccines can neutralize the current MPXV more than 40 years after vaccine administration.
Assuntos
Mpox , Vacina Antivariólica , Varíola , Humanos , Monkeypox virus , Mpox/epidemiologia , Mpox/prevenção & controle , Vacina Antivariólica/genética , VacinaçãoRESUMO
Low-grade intestinal inflammation and alterations of gut barrier integrity are found in patients affected by extraintestinal autoimmune diseases such as type 1 diabetes (T1D), but a direct causal link between enteropathy and triggering of autoimmunity is yet to be established. Here, we found that onset of autoimmunity in preclinical models of T1D is associated with alterations of the mucus layer structure and loss of gut barrier integrity. Importantly, we showed that breakage of the gut barrier integrity in BDC2.5XNOD mice carrying a transgenic T cell receptor (TCR) specific for a beta cell autoantigen leads to activation of islet-reactive T cells within the gut mucosa and onset of T1D. The intestinal activation of islet-reactive T cells requires the presence of gut microbiota and is abolished when mice are depleted of endogenous commensal microbiota by antibiotic treatment. Our results indicate that loss of gut barrier continuity can lead to activation of islet-specific T cells within the intestinal mucosa and to autoimmune diabetes and provide a strong rationale to design innovative therapeutic interventions in "at-risk" individuals aimed at restoring gut barrier integrity to prevent T1D occurrence.
Assuntos
Colite/imunologia , Diabetes Mellitus Tipo 1/genética , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Ilhotas Pancreáticas/imunologia , Linfócitos T/imunologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/imunologia , Glicemia/imunologia , Glicemia/metabolismo , Colite/induzido quimicamente , Colite/patologia , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Permeabilidade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Dodecilsulfato de Sódio/administração & dosagem , Análise de Sobrevida , Linfócitos T/patologia , TransgenesRESUMO
The spread of multidrug-resistant (MDR) K. pneumoniae carbapenemase-producing bacteria (KPC) is one of the most serious threats to global public health. Due to the limited antibiotic options, colis- tin often represents a therapeutic choice. In this study, we performed Whole-Genome Sequencing (WGS) by Illumina and Nanopore platforms on four colistin-resistant K. pneumoniae isolates (CoRKp) to explore the resistance profile and the mutations involved in colistin resistance. Mapping reads with reference sequence of the most com- mon genes involved in colistin resistance did not show the presence of mobile colistin resistance (mcr) genes in all CoRKp. Complete or partial deletions of mgrB gene were observed in three out of four CoRKp, while in one CoRKp the mutation V24G on phoQ was identified. Complementation assay with proper wild type genes restored colistin susceptibility, validating the role of the amino acid substitution V24G and, as already described in the literature, confirming the key role of mgrB alterations in colistin resistance. In conclusion, this study allowed the identification of the novel mutation on phoQ gene involved in colistin resistance phenotype.
Assuntos
Colistina , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colistina/farmacologia , Colistina/uso terapêutico , Farmacorresistência Bacteriana/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Mutação , beta-Lactamases/genéticaRESUMO
The ongoing coronavirus disease 2019 pandemic has forced the clinical and scientific community to try drug repurposing of existing antiviral agents as a quick option against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Under this scenario, interferon (IFN) ß-1a, whose antiviral potential is already known, and which is a drug currently used in the clinical management of multiple sclerosis, may represent as a potential candidate. In this report, we demonstrate that IFN-ß-1a was highly effective in inhibiting in vitro SARS-CoV-2 replication at clinically achievable concentration when administered after virus infection.
Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Interferon beta-1a/farmacologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Animais , Betacoronavirus/fisiologia , COVID-19 , Chlorocebus aethiops , Reposicionamento de Medicamentos , Pandemias , SARS-CoV-2 , Células Vero , Replicação Viral/efeitos dos fármacosRESUMO
Objectives: A milder clinical course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been anecdotally reported over the latest phase of COVID-19 pandemic in Italy. Several factors may contribute to this observation, including the effect of lockdown, social distancing, lower humidity, lower air pollution, and potential changes in the intrinsic pathogenicity of the virus. In this regard, the clinical severity of COVID-19 could be attenuated by mutations in SARS-CoV-2 genome that decrease its virulence, as well as by lower virus inocula. Methods: In this pilot study, we compared the reverse transcription polymerase chain reaction (RT-PCR) amplification profile of 100 nasopharyngeal swabs consecutively collected in April, during the peak of SARS-CoV-2 epidemic, to that of 100 swabs collected using the same procedure in May. Results: The mean Ct value of positive samples collected in May was significantly higher than that of samples collected in the previous period (ORF 1a/b gene: 31.85 ± 0.32 vs. 28.37 ± 0.5, p<0.001; E gene: 33.76 ± 0.38 vs. 29.79 ± 0.63, p<0.001), suggesting a lower viral load at the time of sampling. No significant differences were observed between male and females in the two periods, whilst higher viral loads were found in (i) patients over 60-years old, and (ii) patients that experienced severe COVID-19 during the early stages of the pandemic. Conclusions: This pilot study prompts further investigation on the correlation between SARS-CoV-2 load and different clinical manifestation of COVID-19 during different phases of the pandemic. Laboratories should consider reporting quantitative viral load data in the molecular diagnosis of SARS-CoV-2 infection.
Assuntos
Betacoronavirus , Infecções por Coronavirus/virologia , Nasofaringe/virologia , Pneumonia Viral/virologia , Carga Viral , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Teste para COVID-19 , Criança , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Feminino , Hospitais Universitários , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Pandemias , Projetos Piloto , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Adulto JovemRESUMO
STUDY QUESTION: Given the relevant role of the extracellular microenvironment in regulating tissue homeostasis, is testicular bacterial microbiome (BM) associated with germ cell aplasia in idiopathic non-obstructive azoospermia (iNOA)? SUMMARY ANSWER: A steady increase of dysbiosis was observed among testis with normal spermatogenesis vs. iNOA with positive sperm retrieval and iNOA with complete germ cell aplasia. WHAT IS KNOWN ALREADY: Tissue-associated BM has been reported to be a biologically important extracellular microenvironment component for numerous body habitats, but not yet for the human testis. STUDY DESIGN, SIZE, DURATION: Cross-sectional study, investigating tissue-associated BM in the testis of (i) five men with iNOA and negative sperm retrieval at microdissection testicular sperm extraction (microTESE); (ii) five men with iNOA and positive sperm retrieval at microTESE; and (iii) five normozoospermic men upon orchiectomy. Every testicular specimen was histologically classified and analyzed in terms of bacterial community. PARTICIPANTS/MATERIALS, SETTING, METHODS: Massive ultra-deep pyrosequencing was applied to investigate testis microbiome. Metagenome was analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Tissue-associated bacterial load was quantified by digital droplet PCR. MAIN RESULTS AND THE ROLE OF CHANCE: Normozoospermic men showed small amounts of bacteria in the testis, with Actinobacteria, Bacteroidetes, Firmicutes Proteobacteria as the dominating phyla; iNOA individuals had increased amounts of bacterial DNA (P = 0.02), associated with decreased taxa richness due to the lack of Bacteroidetes and Proteobacteria (P = 2 × 10-5). Specimens with negative sperm retrieval at microTESE depicted complete germ cell aplasia and a further decrease in terms of Firmicutes and Clostridia (P < 0.05), a complete lack of Peptoniphilus asaccharolyticus, but increased amount of Actinobacteria. LIMITATIONS, REASONS FOR CAUTION: The limited number of specimens analyzed in this preliminary study deserves external validation. The paraneoplastic microenvironment could have an impact on the residential bacterial flora. WIDER IMPLICATION OF THE FINDINGS: Human testicular microenvironment is not microbiologically sterile, containing low amounts of Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. A dysbiotic bacterial community was associated with iNOA and complete germ cell aplasia. Novel findings on testicular BM could support future translational therapies of male-factor infertility. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by URI-Urological Research Institute free funds. Authors declared no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Azoospermia/complicações , Disbiose/complicações , Microbiota , Testículo/microbiologia , Azoospermia/microbiologia , Azoospermia/patologia , Estudos Transversais , Disbiose/microbiologia , Disbiose/patologia , Humanos , Masculino , Espermatogênese/fisiologia , Testículo/patologiaRESUMO
In recent years many advances have been made in the fight against HIV-1 infection. However, the lack of a vaccine, together with the increasing resistance to the highly active anti-retroviral therapy (HAART), make HIV-1 infection still a serious global emergency. Thus, new compounds with original modes of action are continuously required, and natural products have ever been a very interesting class of pharmacologically active molecules. Some of them have been used since ancient times against viral infections. Here we present a work in which we suggest that kuwanon-L, a natural product active as an HIV-1 integrase (IN) inhibitor, might exert its overall antiviral activity through binding to multiple viral targets. Specific enzymatic tests, together with a time-of-addition (TOA) experiment, support our hypothesis of binding both to IN and to reverse transcriptase (RT). Overall, this compound can be considered an attractive lead for the development of new classes of antiviral agents able to overcome the problem of resistance, due to its ability to exert its action by binding simultaneously to multiple viral targets.
Assuntos
Flavonolignanos/química , Flavonolignanos/farmacologia , HIV-1/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Sistemas de Liberação de Medicamentos , Humanos , Estrutura MolecularRESUMO
One resistance mechanism in malignant gliomas (MG) involves nuclear factor-κB (NF-κB) activation. Bortezomib prevents proteasomal degradation of NF-κB inhibitor α (NFKBIA), an endogenous regulator of NF-κB signaling, thereby limiting the effects of NF-κB on tumor survival and resistance. A presurgical phase II trial of bortezomib in recurrent MG was performed to determine drug concentration in tumor tissue and effects on NFKBIA. Patients were enrolled after signing an IRB approved informed consent. Treatment was bortezomib 1.7 mg/m(2) IV on days 1, 4 and 8 and then surgery on day 8 or 9. Post-operatively, treatment was Temozolomide (TMZ) 75 mg/m(2) PO on days 1-7 and 14-21 and bortezomib 1.7 mg/m(2) on days 7 and 21 [1 cycle was (1) month]. Ten patients were enrolled (8 M and 2 F) with 9 having surgery. Median age and KPS were 50 (42-64) and 90 % (70-100). The median cycles post-operatively was 2 (0-4). The trial was stopped as no patient had a PFS-6. All patients are deceased. Paired plasma and tumor bortezomib concentration measurements revealed higher drug concentrations in tumor than in plasma; NFKBIA protein levels were similar in drug-treated vs. drug-naïve tumor specimens. Nuclear 20S proteasome was less in postoperative samples. Postoperative treatment with TMZ and bortezomib did not show clinical activity. Bortezomib appears to sequester in tumor but pharmacological effects on NFKBIA were not seen, possibly obscured due to downregulation of NFKBIA during tumor progression. Changes in nuclear 20S could be marker of bortezomib effect on tumor.
Assuntos
Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Adulto , Antineoplásicos/farmacocinética , Bortezomib/sangue , Bortezomib/farmacocinética , Neoplasias Encefálicas/metabolismo , Terapia Combinada , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Quimioterapia Combinada , Feminino , Glioblastoma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Inibidor de NF-kappaB alfa/metabolismo , Recidiva Local de Neoplasia/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Temozolomida , Resultado do TratamentoAssuntos
COVID-19/diagnóstico , Serviço Hospitalar de Emergência/estatística & dados numéricos , Unidades de Terapia Intensiva/estatística & dados numéricos , Carga Viral/estatística & dados numéricos , Idoso , COVID-19/mortalidade , Teste de Ácido Nucleico para COVID-19 , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Nasofaringe/virologia , Prognóstico , Modelos de Riscos Proporcionais , RNA Viral/análise , SARS-CoV-2/químicaRESUMO
HIV-1 integrase (IN) active site inhibitors are the latest class of drugs approved for HIV treatment. The selection of IN strand-transfer drug-resistant HIV strains in patients supports the development of new agents that are active as allosteric IN inhibitors. Here, a docking-based virtual screening has been applied to a small library of natural ligands to identify new allosteric IN inhibitors that target the sucrose binding pocket. From theoretical studies, kuwanon-L emerged as the most promising binder and was thus selected for biological studies. Biochemical studies showed that kuwanon-L is able to inhibit the HIV-1 IN catalytic activity in the absence and in the presence of LEDGF/p75 protein, the IN dimerization, and the IN/LEDGF binding. Kuwanon-L also inhibited HIV-1 replication in cell cultures. Overall, docking and biochemical results suggest that kuwanon-L binds to an allosteric binding pocket and can be considered an attractive lead for the development of new allosteric IN antiviral agents.
Assuntos
Flavonoides/química , Flavonolignanos/química , Inibidores de Integrase de HIV/química , Integrase de HIV/química , HIV-1/fisiologia , Regulação Alostérica , Sítios de Ligação , Linhagem Celular , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonolignanos/metabolismo , Flavonolignanos/toxicidade , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacologia , Humanos , Simulação de Acoplamento Molecular , Morus/química , Morus/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Replicação Viral/efeitos dos fármacosRESUMO
OBJECTIVES: Although founder viruses in primary HIV-1 infections (PHIs) typically use the CCR5 coreceptor (R5-tropic), 3%-19% of subjects also harbour CXCR4-using viruses (X4-tropic), making tropism determination before CCR5 antagonist usage mandatory. Genotypic methods can be used to accurately determine HIV-1 tropism in chronically infected patients. METHODS: We compared the results of genotypic methods [geno2pheno, PSSMx4r5 including a novel nucleotide-input version (ntPSSM) and distant segments (ds)Kernel] to predict coreceptor usage in a cohort of 67 PHIs. Specimens with discrepant results were phenotypically tested after cloning the V3 gene region into proviral backbones. Recombinant viruses were used to infect U87 indicator cell lines bearing CD4 and either CCR5 or CXCR4. RESULTS: Geno2pheno10%, PSSMx4r5 and (ds)Kernel gave identical predictions in 85% of cases. Geno2pheno10% predicted the presence of CXCR4 viruses in 18% of patients. Two patients were predicted to carry X4-tropic viruses by all algorithms and X4-tropic viruses were detected in at least one of the recombinant AD8 or NL4-3 backbone-based assays. Ten samples resulted in discordant predictions with at least one algorithm. Full concordance between tropism prediction by using population sequencing and phenotypic assays was observed only with ntPSSM. Geno2pheno prediction and the phenotypic assay gave the same results in a minority of 'discordant' patients. CONCLUSIONS: Compared with both PSSMx4r5 versions, (ds)Kernel and our phenotypic assay, geno2pheno10% overestimated the frequency of X4-tropic viruses (18% versus 3%). ntPSSM was able to detect one additional X4 virus compared with (ds)Kernel that was confirmed with the phenotypic assay.
Assuntos
Técnicas de Genotipagem/métodos , Infecções por HIV/virologia , HIV-1/fisiologia , Receptores de HIV/análise , Tropismo Viral , Cultura de Vírus/métodos , Genótipo , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , FenótipoRESUMO
We report here the synthesis of 2-aminothiazolones along with their biological properties as novel anti-HIV agents. Such compounds have proven to act through the inhibition of the gp120-CD4 protein-protein interaction that occurs at the very early stage of the HIV-1 entry process. No cytotoxicity was found for these compounds, and broad antiviral activities against laboratory strains and pseudotyped viruses were documented. Docking simulations have also been applied to predict the mechanism, at the molecular level, by which the inhibitors were able to interact within the Phe43 cavity of HIV-1 gp120. Furthermore, a preliminary absorption, distribution, metabolism, and excretion (ADME) evaluation was performed. Overall, this study led the basis for the development of more potent HIV entry inhibitors.
Assuntos
Fármacos Anti-HIV/farmacologia , Antígenos CD4/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/química , Antígenos CD4/química , Antígenos CD4/metabolismo , Linhagem Celular , Proteína gp120 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Humanos , Simulação de Acoplamento Molecular , Ligação ProteicaRESUMO
BACKGROUND: Amplification and activating mutations of the epidermal growth factor receptor (EGFR) oncogene are molecular hallmarks of glioblastomas. We hypothesized that deletion of NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α), an inhibitor of the EGFR-signaling pathway, promotes tumorigenesis in glioblastomas that do not have alterations of EGFR. METHODS: We analyzed 790 human glioblastomas for deletions, mutations, or expression of NFKBIA and EGFR. We studied the tumor-suppressor activity of NFKBIA in tumor-cell culture. We compared the molecular results with the outcome of glioblastoma in 570 affected persons. RESULTS: NFKBIA is often deleted but not mutated in glioblastomas; most deletions occur in nonclassical subtypes of the disease. Deletion of NFKBIA and amplification of EGFR show a pattern of mutual exclusivity. Restoration of the expression of NFKBIA attenuated the malignant phenotype and increased the vulnerability to chemotherapy of cells cultured from tumors with NFKBIA deletion; it also reduced the viability of cells with EGFR amplification but not of cells with normal gene dosages of both NFKBIA and EGFR. Deletion and low expression of NFKBIA were associated with unfavorable outcomes. Patients who had tumors with NFKBIA deletion had outcomes that were similar to those in patients with tumors harboring EGFR amplification. These outcomes were poor as compared with the outcomes in patients with tumors that had normal gene dosages of NFKBIA and EGFR. A two-gene model that was based on expression of NFKBIA and O(6)-methylguanine DNA methyltransferase was strongly associated with the clinical course of the disease. CONCLUSIONS: Deletion of NFKBIA has an effect that is similar to the effect of EGFR amplification in the pathogenesis of glioblastoma and is associated with comparatively short survival.
Assuntos
Deleção de Genes , Genes erbB-1 , Glioblastoma/genética , Proteínas I-kappa B/genética , Análise Mutacional de DNA , Amplificação de Genes , Expressão Gênica , Glioblastoma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Inibidor de NF-kappaB alfa , Prognóstico , Células Tumorais CultivadasRESUMO
BACKGROUND AND OBJECTIVES: To systematically describe pertinent, intraoperative anatomic findings encountered when approaching spinal cerebrospinal fluid (CSF) leaks and CSF-venous fistulas in spontaneous intracranial hypotension (SIH). METHODS: In a retrospective study, we included surgically treated patients suffering from SIH at our institution from April 2018 to March 2022. Anatomic, intraoperative data were extracted from operative notes and supplemented with data from surgical videos and images. Prominent anatomic features were compared among different types of CSF leaks. RESULTS: The study cohort consists of 120 patients with a mean age of 45.2 years. We found four distinct patterns of spinal membranes specifically associated with different types of CSF leaks: (i) thick, dorsal membranes, which were hypervascular and may mimic the dura (pseudodura); (ii) thin, lateral membranes encapsulating a ventral epidural CSF compartment (confining the spinal longitudinal extradural CSF collection); (iii) ventral membranes constituting a transdural funnel-like CSF channel; and (iv) lateral membranes forming spinal cysts/meningeal diverticulae associated with lateral CSF leaks. The latter three types resemble a layer of arachnoid herniated through the dural defect. CONCLUSION: We describe four distinct spinal (neo-)membranes in association with spinal CSF leaks. Formation of these membranes, or emergence by herniation of arachnoid through a dural defect, constitutes a specific pathoanatomic feature of patients with SIH and CSF leaks. Recognition of these membranes is of paramount importance for diagnosis and treatment of patients with spinal CSF leaks.
Assuntos
Hipotensão Intracraniana , Humanos , Pessoa de Meia-Idade , Hipotensão Intracraniana/complicações , Hipotensão Intracraniana/diagnóstico por imagem , Estudos Retrospectivos , Vazamento de Líquido Cefalorraquidiano/complicações , Vazamento de Líquido Cefalorraquidiano/diagnóstico por imagem , Vazamento de Líquido Cefalorraquidiano/cirurgia , Dura-Máter , Coluna VertebralRESUMO
Aconitate decarboxylase 1 (ACOD1) is the enzyme synthesizing itaconate, an immuno-regulatory metabolite tuning host-pathogen interactions. Such functions are achieved by affecting metabolic pathways regulating inflammation and microbe survival. However, at the whole-body level, metabolic roles of itaconate remain largely unresolved. By using multiomics-integrated approaches, here we show that ACOD1 responds to high-fat diet consumption in mice by promoting gut microbiota alterations supporting metabolic disease. Genetic disruption of itaconate biosynthesis protects mice against obesity, alterations in glucose homeostasis and liver metabolic dysfunctions by decreasing meta-inflammatory responses to dietary lipid overload. Mechanistically, fecal metagenomics and microbiota transplantation experiments demonstrate such effects are dependent on an amelioration of the intestinal ecosystem composition, skewed by high-fat diet feeding towards obesogenic phenotype. In particular, unbiased fecal microbiota profiling and axenic culture experiments point towards a primary role for itaconate in inhibiting growth of Bacteroidaceae and Bacteroides, family and genus of Bacteroidetes phylum, the major gut microbial taxon associated with metabolic health. Specularly to the effects imposed by Acod1 deficiency on fecal microbiota, oral itaconate consumption enhances diet-induced gut dysbiosis and associated obesogenic responses in mice. Unveiling an unrecognized role of itaconate, either endogenously produced or exogenously administered, in supporting microbiota alterations underlying diet-induced obesity in mice, our study points ACOD1 as a target against inflammatory consequences of overnutrition.
Assuntos
Microbioma Gastrointestinal , Succinatos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/metabolismoRESUMO
Since the emergence of the COVID-19 pandemic in December 2019, the SARS-CoV-2 virus continues to evolve into many variants emerging around the world. To enable regular surveillance and timely adjustments in public health interventions, it is of the utmost importance to accurately monitor and track the distribution of variants as rapidly as possible. Genome sequencing is the gold standard for monitoring the evolution of the virus, but it is not cost-effective, rapid and easily accessible. We have developed a microarray-based assay that can distinguish known viral variants present in clinical samples by simultaneously detecting mutations in the Spike protein gene. In this method, the viral nucleic acid, extracted from nasopharyngeal swabs, after RT-PCR, hybridizes in solution with specific dual-domain oligonucleotide reporters. The domains complementary to the Spike protein gene sequence encompassing the mutation form hybrids in solution that are directed by the second domain ("barcode" domain) at specific locations on coated silicon chips. The method utilizes characteristic fluorescence signatures to unequivocally differentiate, in a single assay, different known SARS-CoV-2 variants. In the nasopharyngeal swabs of patients, this multiplex system was able to genotype the variants which have caused waves of infections worldwide, reported by the WHO as being of concern (VOCs), namely Alpha, Beta, Gamma, Delta and Omicron variants.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Glicoproteína da Espícula de CoronavírusRESUMO
Enhanced fatty acid synthesis is a hallmark of tumors, including glioblastoma. SREBF1/2 regulate the expression of enzymes involved in fatty acid and cholesterol synthesis. Yet, little is known about the precise mechanism regulating SREBP gene expression in glioblastoma. Here, we show that a novel interaction between the co-activator/co-repressor CTBP and the tumor suppressor ZBTB18 regulates the expression of SREBP genes. In line with our findings, metabolic assays and glucose tracing analysis confirm the reduction in several phospholipid species upon ZBTB18 expression. Our study identifies CTBP1/2 and LSD1 as co-activators of SREBP genes and indicates that the functional activity of the CTBP-LSD1 complex is altered by ZBTB18. ZBTB18 binding to the SREBP gene promoters is associated with reduced LSD1 demethylase activity of H3K4me2 and H3K9me2 marks. Concomitantly, the interaction between LSD1, CTBP, and ZNF217 is increased, suggesting that ZBTB18 promotes LSD1 scaffolding function. Our results outline a new epigenetic mechanism enrolled by ZBTB18 and its co-factors to regulate fatty acid synthesis that could be targeted to treat glioblastoma patients.
Assuntos
Glioblastoma , Humanos , Ácidos Graxos , Glioblastoma/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/genéticaRESUMO
BACKGROUND: In preclinical models of Type 1 Diabetes (T1D) the integrity of the gut barrier (GB) is instrumental to avoid dysregulated crosstalk between the commensal microbiota and immune cells and to prevent autoimmunity. The GB is composed of the intestinal epithelial barrier (IEB) and of the mucus layer containing mucins and antimicrobial peptides (AMPs) that are crucial to maintain immune tolerance. In preclinical models of T1D the alterations of the GB primarily affect the mucus layer. In human T1D increased gut permeability and IEB damage have been demonstrated but the integrity of the mucus layer was never assessed. METHODS: We evaluated GB integrity by measuring serological markers of IEB damage (serological levels of zonulin) and bacterial translocation such as lipopolysaccharide binding protein (LBP) and myeloid differentiation protein 2 (MD2), and mRNA expression of tight junction proteins, mucins and AMPs in intestinal tissue of T1D patients and healthy controls (HC). Simultaneously, we performed immunological profiling on intestinal tissue and 16S rRNA analysis on the mucus-associated gut microbiota (MAGM). FINDINGS: Our data show a GB damage with mucus layer alterations and reduced mRNA expression of several mucins (MUC2, MUC12, MUC13, MUC15, MUC20, MUC21) and AMPs (HD4 and HD5) in T1D patients. Mucus layer alterations correlated with reduced relative abundance of short chain fatty acids (SCFA)-producing bacteria such as Bifidobacterium dentium, Clostridium butyricum and Roseburia intestinalis that regulate mucin expression and intestinal immune homeostasis. In T1D patients we also found intestinal immune dysregulation with higher percentages of effector T cells such as T helper (Th) 1, Th17 and TNF-α+ T cells. INTERPRETATION: Our data show that mucus layer alterations are present in T1D subjects and associated with dysbiosis and immune dysregulation. FUNDING: Research Grants from the Juvenile Diabetes Foundation (Grant 1-INO-2018-640-A-N to MF and 2-SRA-2019-680-S-B to JD) and from the Italian Ministry of Health (Grant RF19-12370721 to MF).
Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Mucosa Intestinal/metabolismo , Disbiose/metabolismo , RNA Ribossômico 16S/metabolismo , Mucinas/metabolismo , Muco/metabolismo , RNA Mensageiro/metabolismoRESUMO
To counter systemic risk of infection by parasitic wasps, Drosophila larvae activate humoral immunity in the fat body and mount a robust cellular response resulting in encapsulation of the wasp egg. Innate immune reactions are tightly regulated and are resolved within hours. To understand the mechanisms underlying activation and resolution of the egg encapsulation response and examine if failure of the latter develops into systemic inflammatory disease, we correlated parasitic wasp-induced changes in the Drosophila larva with systemic chronic conditions in sumoylation-deficient mutants. We have previously reported that loss of either Cactus, the Drosophila (IκB) protein or Ubc9, the SUMO-conjugating enzyme, leads to constitutive activation of the humoral and cellular pathways, hematopoietic overproliferation and tumorogenesis. Here we report that parasite infection simultaneously activates NF-κB-dependent transcription of Spätzle processing enzyme (SPE) and cactus. Endogenous Spätzle protein (the Toll ligand) is expressed in immune cells and excessive SPE or Spätzle is pro-inflammatory. Consistent with this function, loss of Spz suppresses Ubc9â» defects. In contrast to the pro-inflammatory roles of SPE and Spätzle, Cactus and Ubc9 exert an anti-inflammatory effect. We show that Ubc9 maintains steady state levels of Cactus protein. In a series of immuno-genetic experiments, we demonstrate the existence of a robust bidirectional interaction between blood cells and the fat body and propose that wasp infection activates Toll signaling in both compartments via extracellular activation of Spätzle. Within each organ, the IκB/Ubc9-dependent inhibitory feedback resolves immune signaling and restores homeostasis. The loss of this feedback leads to chronic inflammation. Our studies not only provide an integrated framework for understanding the molecular basis of the evolutionary arms race between insect hosts and their parasites, but also offer insights into developing novel strategies for medical and agricultural pest control.