Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Nucleic Acids Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808669

RESUMO

Chromatin three-dimensional (3D) organization inside the cell nucleus determines the separation of euchromatin and heterochromatin domains. Their segregation results in the definition of active and inactive chromatin compartments, whereby the local concentration of associated proteins, RNA and DNA results in the formation of distinct subnuclear structures. Thus, chromatin domains spatially confined in a specific 3D nuclear compartment are expected to share similar epigenetic features and biochemical properties, in terms of accessibility and solubility. Based on this rationale, we developed the 4f-SAMMY-seq to map euchromatin and heterochromatin based on their accessibility and solubility, starting from as little as 10 000 cells. Adopting a tailored bioinformatic data analysis approach we reconstruct also their 3D segregation in active and inactive chromatin compartments and sub-compartments, thus recapitulating the characteristic properties of distinct chromatin states. A key novelty of the new method is the capability to map both the linear segmentation of open and closed chromatin domains, as well as their compartmentalization in one single experiment.

2.
Cell ; 141(7): 1195-207, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20603000

RESUMO

Although specific microRNAs (miRNAs) can be upregulated in cancer, global miRNA downregulation is a common trait of human malignancies. The mechanisms of this phenomenon and the advantages it affords remain poorly understood. Here we identify a microRNA family, miR-103/107, that attenuates miRNA biosynthesis by targeting Dicer, a key component of the miRNA processing machinery. In human breast cancer, high levels of miR-103/107 are associated with metastasis and poor outcome. Functionally, miR-103/107 confer migratory capacities in vitro and empower metastatic dissemination of otherwise nonaggressive cells in vivo. Inhibition of miR-103/107 opposes migration and metastasis of malignant cells. At the cellular level, a key event fostered by miR-103/107 is induction of epithelial-to-mesenchymal transition (EMT), attained by downregulating miR-200 levels. These findings suggest a new pathway by which Dicer inhibition drifts epithelial cancer toward a less-differentiated, mesenchymal fate to foster metastasis.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Metástase Neoplásica/genética , Ribonuclease III/genética , Animais , Neoplasias da Mama/diagnóstico , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Feminino , Humanos , Camundongos , Prognóstico
3.
Nat Mater ; 22(5): 644-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36581770

RESUMO

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Assuntos
Actinas , Neoplasias , DNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , Transdução de Sinais
4.
Nucleic Acids Res ; 50(22): 12809-12828, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537238

RESUMO

Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.


Assuntos
Processamento Alternativo , Caderinas , Histonas , Cromatina , Histonas/metabolismo , Lisina/metabolismo , RNA/metabolismo , Caderinas/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Transtorno do Espectro Autista/genética
5.
Nucleic Acids Res ; 49(17): e97, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34197622

RESUMO

A growing amount of evidence in literature suggests that germline sequence variants and somatic mutations in non-coding distal regulatory elements may be crucial for defining disease risk and prognostic stratification of patients, in genetic disorders as well as in cancer. Their functional interpretation is challenging because genome-wide enhancer-target gene (ETG) pairing is an open problem in genomics. The solutions proposed so far do not account for the hierarchy of structural domains which define chromatin three-dimensional (3D) architecture. Here we introduce a change of perspective based on the definition of multi-scale structural chromatin domains, integrated in a statistical framework to define ETG pairs. In this work (i) we develop a computational and statistical framework to reconstruct a comprehensive map of ETG pairs leveraging functional genomics data; (ii) we demonstrate that the incorporation of chromatin 3D architecture information improves ETG pairing accuracy and (iii) we use multiple experimental datasets to extensively benchmark our method against previous solutions for the genome-wide reconstruction of ETG pairs. This solution will facilitate the annotation and interpretation of sequence variants in distal non-coding regulatory elements. We expect this to be especially helpful in clinically oriented applications of whole genome sequencing in cancer and undiagnosed genetic diseases research.


Assuntos
Algoritmos , Cromatina/genética , Biologia Computacional/métodos , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/metabolismo , Epistasia Genética , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Neoplasias/genética , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética
6.
J Immunol ; 203(12): 3179-3189, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740485

RESUMO

In mice, the ability of naive T (TN) cells to mount an effector response correlates with TCR sensitivity for self-derived Ags, which can be quantified indirectly by measuring surface expression levels of CD5. Equivalent findings have not been reported previously in humans. We identified two discrete subsets of human CD8+ TN cells, defined by the absence or presence of the chemokine receptor CXCR3. The more abundant CXCR3+ TN cell subset displayed an effector-like transcriptional profile and expressed TCRs with physicochemical characteristics indicative of enhanced interactions with peptide-HLA class I Ags. Moreover, CXCR3+ TN cells frequently produced IL-2 and TNF in response to nonspecific activation directly ex vivo and differentiated readily into Ag-specific effector cells in vitro. Comparative analyses further revealed that human CXCR3+ TN cells were transcriptionally equivalent to murine CXCR3+ TN cells, which expressed high levels of CD5. These findings provide support for the notion that effector differentiation is shaped by heterogeneity in the preimmune repertoire of human CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/imunologia , Receptores CXCR3/metabolismo , Adulto , Fatores Etários , Idoso , Animais , Biomarcadores , Células Cultivadas , Feminino , Humanos , Memória Imunológica , Imunofenotipagem , Ativação Linfocitária/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
7.
Nature ; 525(7570): 469-78, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26399828

RESUMO

Stem cells self-renew and generate specialized progeny through differentiation, but vary in the range of cells and tissues they generate, a property called developmental potency. Pluripotent stem cells produce all cells of an organism, while multipotent or unipotent stem cells regenerate only specific lineages or tissues. Defining stem-cell potency relies upon functional assays and diagnostic transcriptional, epigenetic and metabolic states. Here we describe functional and molecular hallmarks of pluripotent stem cells, propose a checklist for their evaluation, and illustrate how forensic genomics can validate their provenance.


Assuntos
Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genômica , Humanos
8.
Nature ; 528(7581): 218-24, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26659182

RESUMO

Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.


Assuntos
Reprogramação Celular/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Animais , Células Cultivadas , Cromatina/metabolismo , Fator 1 de Modelagem da Cromatina/antagonistas & inibidores , Fator 1 de Modelagem da Cromatina/genética , Regulação da Expressão Gênica/genética , Heterocromatina/metabolismo , Camundongos , Nucleossomos/metabolismo , Interferência de RNA , Transdução Genética
9.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801293

RESUMO

In this study, the role of two reactive fillers, specifically a sand from a clay washing process as an alternative to waste glass powder and a commercial metakaolin (MK), into the geopolymerization process of waste clay-based materials was assessed. Three kinds of clayey wastes from mining operations-halloysitic, kaolinitic and smectitic clays-were tested as potential precursor of geopolymeric materials in view of a potential valorisation of these by-products. A mix-design based on the addition of low percentages (20%) of these fillers or MK to improve the mechanical and chemico-physical properties of geopolymeric formulations was evaluated. All the clays were thermally treated at a temperature of 650 °C, while the geopolymeric pastes were cured at room temperature. In particular, the chemical stability in water (pH and ionic conductivity of leachate water, weight loss), the variations in the microstructure (XRD, SEM), and in the mechanical performance (compressive strength) were analysed. The most reactive additive was MK, followed by sand and waste glass at very similar levels-1:1 or 2:1-depending upon the type of the clay but not strictly related to the clay type. The increase of geopolymeric gel densification due to the presence of MK and sand was replaced by a crack deflection mechanism in the case of the WG grains. The worst performance (chemical stability and mechanical properties) was found for the halloysitic clay, while kaolinitic and smectitic clays developed strengths slightly below 30 MPa.


Assuntos
Argila/química , Materiais de Construção/análise , Vidro/química , Resíduos Industriais/análise , Caulim/química , Areia , Resíduos/análise , Temperatura
10.
Nat Methods ; 14(7): 679-685, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28604721

RESUMO

Hi-C is a genome-wide sequencing technique used to investigate 3D chromatin conformation inside the nucleus. Computational methods are required to analyze Hi-C data and identify chromatin interactions and topologically associating domains (TADs) from genome-wide contact probability maps. We quantitatively compared the performance of 13 algorithms in their analyses of Hi-C data from six landmark studies and simulations. This comparison revealed differences in the performance of methods for chromatin interaction identification, but more comparable results for TAD detection between algorithms.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos/química , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Animais , Cromatina/química , Cromossomos/genética , Simulação por Computador , Genoma
11.
Bioinformatics ; 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31697323

RESUMO

SUMMARY: Genome-wide chromosome conformation capture based on high-throughput sequencing (Hi-C) has been widely adopted to study chromatin architecture by generating datasets of ever-increasing complexity and size. HiCBricks offers user-friendly and efficient solutions for handling large high-resolution Hi-C datasets. The package provides an R/Bioconductor framework with the bricks to build more complex data analysis pipelines and algorithms. HiCBricks already incorporates functions for calling domain boundaries and functions for high quality data visualization. AVAILABILITY: http://bioconductor.org/packages/devel/bioc/html/HiCBricks.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

12.
Nature ; 512(7515): 449-52, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164756

RESUMO

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Animais , Linhagem Celular , Centrômero/genética , Centrômero/metabolismo , Cromatina/química , Montagem e Desmontagem da Cromatina/genética , Replicação do DNA/genética , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Lâmina Nuclear/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Especificidade da Espécie
14.
Nucleic Acids Res ; 45(W1): W109-W115, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28460063

RESUMO

The structural and conformational organization of chromosomes is crucial for gene expression regulation in eukaryotes and prokaryotes as well. Up to date, gene expression data generated using either microarray or RNA-sequencing are available for many bacterial genomes. However, differential gene expression is usually investigated with methods considering each gene independently, thus not taking into account the physical localization of genes along a bacterial chromosome. Here, we present WoPPER, a web tool integrating gene expression and genomic annotations to identify differentially expressed chromosomal regions in bacteria. RNA-sequencing or microarray-based gene expression data are provided as input, along with gene annotations. The user can select genomic annotations from an internal database including 2780 bacterial strains, or provide custom genomic annotations. The analysis produces as output the lists of positionally related genes showing a coordinated trend of differential expression. Graphical representations, including a circular plot of the analyzed chromosome, allow intuitive browsing of the results. The analysis procedure is based on our previously published R-package PREDA. The release of this tool is timely and relevant for the scientific community, as WoPPER will fill an existing gap in prokaryotic gene expression data analysis and visualization tools. WoPPER is open to all users and can be reached at the following URL: https://WoPPER.ba.itb.cnr.it.


Assuntos
Bactérias/genética , Perfilação da Expressão Gênica , Genoma Bacteriano , Software , Bactérias/metabolismo , Cromossomos Bacterianos , Expressão Gênica , Genômica , Internet , Anotação de Sequência Molecular
15.
Environ Sci Technol ; 52(2): 446-456, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29185716

RESUMO

Here we report concentrations of pollutants in floating plastics from the North Pacific accumulation zone (NPAC). We compared chemical concentrations in plastics of different types and sizes, assessed ocean plastic potential risks using sediment quality criteria, and discussed the implications of our findings for bioaccumulation. Our results suggest that at least a fraction of the NPAC plastics is not in equilibrium with the surrounding seawater. For instance, "hard plastic" samples had significantly higher PBDE concentrations than "nets and ropes" samples, and 29% of them had PBDE composition similar to a widely used flame-retardant mixture. Our findings indicate that NPAC plastics may pose a chemical risk to organisms as 84% of the samples had at least one chemical exceeding sediment threshold effect levels. Furthermore, our surface trawls collected more plastic than biomass (180 times on average), indicating that some NPAC organisms feeding upon floating particles may have plastic as a major component of their diets. If gradients for pollutant transfer from NPAC plastic to predators exist (as indicated by our fugacity ratio calculations), plastics may play a role in transferring chemicals to certain marine organisms.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Organismos Aquáticos , Monitoramento Ambiental , Oceano Pacífico , Plásticos , Água do Mar
16.
Hum Mol Genet ; 24(9): 2442-57, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25574027

RESUMO

The CAG repeat expansion in the Huntington's disease gene HTT extends a polyglutamine tract in mutant huntingtin that enhances its ability to facilitate polycomb repressive complex 2 (PRC2). To gain insight into this dominant gain of function, we mapped histone modifications genome-wide across an isogenic panel of mouse embryonic stem cell (ESC) and neuronal progenitor cell (NPC) lines, comparing the effects of Htt null and different size Htt CAG mutations. We found that Htt is required in ESC for the proper deposition of histone H3K27me3 at a subset of 'bivalent' loci but in NPC it is needed at 'bivalent' loci for both the proper maintenance and the appropriate removal of this mark. In contrast, Htt CAG size, though changing histone H3K27me3, is prominently associated with altered histone H3K4me3 at 'active' loci. The sets of ESC and NPC genes with altered histone marks delineated by the lack of huntingtin or the presence of mutant huntingtin, though distinct, are enriched in similar pathways with apoptosis specifically highlighted for the CAG mutation. Thus, the manner by which huntingtin function facilitates PRC2 may afford mutant huntingtin with multiple opportunities to impinge upon the broader machinery that orchestrates developmentally appropriate chromatin status.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Expansão das Repetições de Trinucleotídeos , Alelos , Animais , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Análise por Conglomerados , Células-Tronco Embrionárias/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Proteína Huntingtina , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/química , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/química , Complexo Repressor Polycomb 2/genética
19.
Am J Forensic Med Pathol ; 38(1): 18-20, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28009598

RESUMO

We report a fatal case of Waterhouse-Friderichsen syndrome in a 64-year-old man. The diagnosis, suspected during the autopsy (performed 63 hours after death), was confirmed through the successful detection of Streptococcus pneumoniae DNA and antigens in samples (blood and liver) collected during the autopsy. These results conformed with blood cultures performed antemortem, which became available only the day after the autopsy. The case underlines the need to collect biological material (liver and blood samples) during autopsy for microbiological investigations, although the collection is performed a long time after the death, suggesting that a liver sample works for DNA and liver and blood work for Streptococcus pneumoniae antigen detection.


Assuntos
Infecções Pneumocócicas/complicações , Streptococcus pneumoniae/isolamento & purificação , Síndrome de Waterhouse-Friderichsen/diagnóstico , Glândulas Suprarrenais/patologia , DNA Bacteriano/isolamento & purificação , Evolução Fatal , Humanos , Fígado/microbiologia , Masculino , Pessoa de Meia-Idade , Esplenectomia , Streptococcus pneumoniae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA