Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928197

RESUMO

Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Naftoquinonas , Humanos , Naftoquinonas/farmacologia , Naftoquinonas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Quinolonas/farmacologia , Quinolonas/química , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Doxorrubicina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Molecules ; 29(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39275097

RESUMO

Olive trees not only produce olives but also generate a substantial amount of waste and by-products, including leaves, pomace (the solid remains after pressing olives for oil), and wastewater from the olive oil-making process. The waste products, particularly the leaves, contain bioactive compounds, especially phenolic compounds, known for their health benefits, such as high antioxidant potential and the ability to reduce inflammation. These compounds have shown promise in preventing and treating cancer. This review, based on in vitro evidence, provides a detailed description and discussion of the mechanisms through which these compounds from olive leaves can prevent development, the ways they might act against cancer cells, and their potential to increase the sensitivity of tumor cells to conventional anticancer therapy. The possible synergistic effects of these compounds suggest that olive leaf extracts may offer a promising approach for cancer treatment, compared with isolated compounds, thus providing novel possibilities for cancer therapy.


Assuntos
Olea , Extratos Vegetais , Folhas de Planta , Olea/química , Folhas de Planta/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fenóis/farmacologia , Fenóis/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais
3.
Molecules ; 25(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752302

RESUMO

Phytochemicals and their metabolites are not considered essential nutrients in humans, although an increasing number of well-conducted studies are linking their higher intake with a lower incidence of non-communicable diseases, including cancer. This review summarizes the current findings concerning the molecular mechanisms of bioactive compounds from grapes and red wine and their metabolites on breast cancer-the most commonly occurring cancer in women-chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds, such as resveratrol, as well as their metabolites, are discussed with respect to structure and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical trials about the chemoprevention and therapy using these molecules is presented.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/prevenção & controle , Fitoterapia , Vitis/química , Vinho/análise , Anticarcinógenos/química , Anticarcinógenos/farmacologia , Neoplasias da Mama/metabolismo , Quimioprevenção , Feminino , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Técnicas In Vitro , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/uso terapêutico
4.
Molecules ; 25(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085381

RESUMO

This review aims to explore the potential of resveratrol, a polyphenol stilbene, and beta-lapachone, a naphthoquinone, as well as their derivatives, in the development of new drug candidates for cancer. A brief history of these compounds is reviewed along with their potential effects and mechanisms of action and the most recent attempts to improve their bioavailability and potency against different types of cancer.


Assuntos
Antineoplásicos/farmacologia , Naftoquinonas/farmacologia , Antineoplásicos/química , Humanos , Concentração Inibidora 50 , Naftoquinonas/química , Naftoquinonas/uso terapêutico , Neoplasias/tratamento farmacológico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo
5.
Molecules ; 22(6)2017 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-28629161

RESUMO

Increasing epidemiological and experimental evidence has demonstrated an inverse relationship between the consumption of plant foods and the incidence of chronic diseases, including cancer. Microcomponents that are naturally present in such foods, especially polyphenols, are responsible for the benefits to human health. Resveratrol is a diet-derived cancer chemopreventive agent with high therapeutic potential, as demonstrated by different authors. The aim of this review is to collect and present recent evidence from the literature regarding resveratrol and its effects on cancer prevention, molecular signaling (especially regarding the involvement of p53 protein), and therapeutic perspectives with an emphasis on clinical trial results to date.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Quimioprevenção , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Estilbenos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Disponibilidade Biológica , Biomarcadores Tumorais , Ensaios Clínicos como Assunto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Avaliação de Resultados em Cuidados de Saúde , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Foods ; 10(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34945706

RESUMO

Green tea (GT) has been shown to play an important role in cancer chemoprevention. However, the related molecular mechanisms need to be further explored, especially regarding the use of GT extract (GTE) from the food matrix. For this study, epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were identified in GTE, representing 42 and 40% of the total polyphenols, respectively. MDA-MB-231 (p53-p.R280K mutant) and MCF-7 (wild-type p53) breast tumor cells and MCF-10A non-tumoral cells were exposed to GTE for 24-48 h and cell viability was assessed in the presence of p53 inhibitor pifithrin-α. GTE selectively targeted breast tumor cells without cytotoxic effect on non-tumoral cells and p53 inhibition led to an increase in viable cells, especially in MCF-7, suggesting the involvement of p53 in GTE-induced cytotoxicity. GTE was also effective in reducing MCF-7 and MDA-MD-231 cell migration by 30 and 50%, respectively. An increment in p53 and p21 expression stimulated by GTE was observed in MCF-7, and the opposite phenomenon was found in MDA-MB-231 cells, with a redistribution of mutant-p53 from the nucleus and no differences in p21 levels. All these findings provide insights into the action of GTE and support its anticarcinogenic potential on breast tumor cells.

7.
Oncotarget ; 9(49): 29112-29122, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30018739

RESUMO

One potential target for cancer therapeutics is the tumor suppressor p53, which is mutated in more than 50% of malignant tumors. Loss of function (LoF), dominant negative (DN) and gain of function (GoF) mutations in p53 are associated with amyloid aggregation. We tested the potential of resveratrol, a naturally occurring polyphenol, to interact and prevent the aggregation of wild-type and mutant p53 in vitro using fluorescence spectroscopy techniques and in human breast cancer cells (MDA-MB-231, HCC-70 and MCF-7) using immunofluorescence co-localization assays. Based on our data, an interaction occurs between resveratrol and the wild-type p53 core domain (p53C). In addition, resveratrol and its derivatives pterostilbene and piceatannol inhibit mutant p53C aggregation in vitro. Additionally, resveratrol reduces mutant p53 protein aggregation in MDA-MB-231 and HCC-70 cells but not in the wild-type p53 cell line MCF-7. To verify the effects of resveratrol on tumorigenicity, cell proliferation and cell migration assays were performed using MDA-MB-231 cells. Resveratrol significantly reduced the proliferative and migratory capabilities of these cells. Our study provides evidence that resveratrol directly modulates p53, enhancing our understanding of the mechanisms involved in p53 aggregation and its potential as a therapeutic strategy for cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA