Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Environ Res ; 252(Pt 1): 118844, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579998

RESUMO

Urban greening can improve cities' air quality by filtering the main gaseous pollutants such as tropospheric ozone (O3). However, the pollutant removal capacity offered by woody species strongly depends on eco-physiological and morphological traits. Woody species with higher stomatal conductance (gs) can remove more gases from the atmosphere, but other species can worsen air quality due to high O3 forming potential (OFP), based on their emitting rates of biogenic volatile organic compounds (bVOCs) and Leaf Mass per Area (LMA). Presently, there is a lack of data on eco-physiological (gs, bVOCs emissions) and foliar traits (LMA) for several ornamental species used in urban greening programs, which does not allow assessment of their O3 removal capacity and OFP. This study aimed to (i) parameterize gs, assess bVOCs emissions and LMA of 14 ornamental woody species commonly used in Mediterranean urban greening, and (ii) model their Net O3 uptake. The gs Jarvis model was parameterized considering various environmental conditions alongside isoprene and monoterpene foliar bVOCs emission rates trapped in the field and quantified by gas chromatography-mass spectrometry. The results are helpful for urban planning and landscaping; suggesting that Catalpa bignonioides and Gleditsia triacanthos have excellent O3 removal capacity due to their high maximum gs (gmax) equal to 0.657 and 0.597 mol H2O m-2 s-1. Regarding bVOCs, high isoprene (16.75 µg gdw-1 h-1) and monoterpene (13.12 µg gdw-1 h-1) emission rates were found for Rhamnus alaternus and Cornus mas. In contrast, no bVOCs emissions were detected for Camellia sasanqua and Paulownia tomentosa. In conclusion, 11 species showed a positive Net O3 uptake, while the use of large numbers of R. alaternus, C. mas, and Chamaerops humilis for urban afforestation planning are not recommended due to their potential to induce a deterioration of outdoor air quality.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Folhas de Planta/metabolismo , Monitoramento Ambiental/métodos
2.
Environ Res ; 252(Pt 1): 118782, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570123

RESUMO

Outdoor air pollution in urban areas, especially particulate matter (PM), is harmful to human health. Urban trees and shrubs provide crucial ecosystem services such as air pollution mitigation by acting as natural filters. However, urban greenery comprises a particular biodiversity, and different plant species vary in their capacity to accumulate PM. Twenty-two plant species were analyzed and selected according to their leaf traits, the different fractions of PM accumulated on the leaves (large - PML, coarse - PMC, and fine - PMF) and their chemical composition. The study was conducted in four city zones: urban traffic (UT), urban background (UB), industrial (IND), and rural (RUR), comparing winter (W) and summer (S) seasons. The average PM levels in the air and accumulated on the leaves were higher in W than in S season. During both seasons, the highest PM accumulated on the leaves was recorded at the UT zone. Nine species were selected as the most suitable for accumulating PML, seven as the most efficient for accumulating PMC, and six for accumulating PMF. The leaf area and leaf roundness were correlated negatively with PM accumulation. The evergreen species L. nobilis was indicated as suitable for dealing with air pollution based on PM10 and PM2.5 values recorded in the air. Regarding the PM element and metal composition, L. nobilis, Photinia x fraseri, Olea europaea, Quercus ilex and Nerium oleander were selected as species with notable elements and metal accumulation. In summary, the study identified species with higher PM accumulation capacity and assessed the seasonal PM accumulation patterns in different city zones, providing insights into the species interactions with PM and their potential for monitoring and coping with air pollution.


Assuntos
Poluentes Atmosféricos , Cidades , Monitoramento Ambiental , Material Particulado , Estações do Ano , Árvores , Material Particulado/análise , Árvores/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Folhas de Planta/química , Poluição do Ar/análise
3.
J Neurosci ; 42(10): 1930-1944, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35058371

RESUMO

We aimed to investigate a sexually dimorphic role of calcitonin gene-related peptide (CGRP) in rodent models of pain. Based on findings in migraine where CGRP has a preferential pain-promoting effect in female rodents, we hypothesized that CGRP antagonists and antibodies would attenuate pain sensitization more efficaciously in female than male mice and rats. In hyperalgesic priming induced by activation of interleukin 6 signaling, CGRP receptor antagonists olcegepant and CGRP8-37 both given intrathecally, blocked, and reversed hyperalgesic priming only in females. A monoclonal antibody against CGRP, given systemically, blocked priming specifically in female rodents but failed to reverse it. In the spared nerve injury model, there was a transient effect of both CGRP antagonists, given intrathecally, on mechanical hypersensitivity in female mice only. Consistent with these findings, intrathecally applied CGRP caused a long-lasting, dose-dependent mechanical hypersensitivity in female mice but more transient effects in males. This CGRP-induced mechanical hypersensitivity was reversed by olcegepant and the KCC2 enhancer CLP257, suggesting a role for anionic plasticity in the dorsal horn in the pain-promoting effects of CGRP in females. In spinal dorsal horn slices, CGRP shifted GABAA reversal potentials to significantly more positive values, but, again, only in female mice. Therefore, CGRP may regulate KCC2 expression and/or activity downstream of CGRP receptors specifically in females. However, KCC2 hypofunction promotes mechanical pain hypersensitivity in both sexes because CLP257 alleviated hyperalgesic priming in male and female mice. We conclude that CGRP promotes pain plasticity in female rodents but has a limited impact in males.SIGNIFICANCE STATEMENT The majority of patients impacted by chronic pain are women. Mechanistic studies in rodents are creating a clear picture that molecular events promoting chronic pain are different in male and female animals. We sought to build on evidence showing that CGRP is a more potent and efficacious promoter of headache in female than in male rodents. To test this, we used hyperalgesic priming and the spared nerve injury neuropathic pain models in mice. Our findings show a clear sex dimorphism wherein CGRP promotes pain in female but not male mice, likely via a centrally mediated mechanism of action. Our work suggests that CGRP receptor antagonists could be tested for efficacy in women for a broader variety of pain conditions.


Assuntos
Dor Crônica , Simportadores , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/efeitos adversos , Feminino , Humanos , Hiperalgesia/metabolismo , Masculino , Camundongos , Ratos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Roedores
4.
Environ Res ; 201: 111475, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34166663

RESUMO

Ozone (O3) is an oxidative air pollutant that affects plant growth. Moringa oleifera is a tree species distributed in the tropical and subtropical regions. This species presents high morphological plasticity, which increases its ability to tolerate stressful conditions, but with no O3 risk assessment calculated so far. The present study assessed the O3 risk to different M. oleifera ecotypes using exposure-based index (AOT40) or flux-based index (PODy - where y is a threshold of O3 uptake). PODy considers the O3 uptake through the stomata and the consequence of environmental climate conditions on stomatal conductance (gsto); thus, it is efficient in assessing O3 risk. Five M. oleifera ecotypes were subjected to ambient (Amb.); middle (Mid. X1.5), and High (x2.0) O3 concentrations for 77 days in a free-air controlled exposure facility (FACE). Leaf biomass (LB) was evaluated, and the biomass loss was projected assuming a clean atmosphere (10 ppb as 24 h O3 average). The gsto parameterization was calculated using the Jarvis-type multiplicative algorithm considering several climate factors, i.e., light intensity, air temperature, air vapor pressure deficit, and AOT40. Ozone exposure harmed the LB of all ecotypes. The high gsto (~559 mmol H2O m-2 s-1) can be considered the reason for the species' O3 sensitivity. M. oleifera is adapted to hot climate conditions, and gsto was restricted with air temperature (Tmin) below ~ 9 °C. As expected, the PODy index performed better than the AOT40 for estimating the O3 effect on biomass losses. We recommend a y threshold of 4 nmol m-2 s-1 to incorporate O3 effects on M. oleifera LB. To not exceed a 4% reduction of LB for any M. oleifera genotype, we recommend the critical levels of 1.1 mmol m-2 POD4.


Assuntos
Poluentes Atmosféricos , Moringa oleifera , Ozônio , Poluentes Atmosféricos/análise , Ecótipo , Ozônio/análise , Ozônio/toxicidade , Folhas de Planta , Árvores
5.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361067

RESUMO

Carotenoids and phenylpropanoids play a dual role of limiting and countering photooxidative stress. We hypothesize that their "antioxidant" function is prominent in plants exposed to summer drought, when climatic conditions exacerbate the light stress. To test this, we conducted a field study on Phillyrea latifolia, a Mediterranean evergreen shrub, carrying out daily physiological and biochemical analyses in spring and summer. We also investigated the functional role of the major phenylpropanoids in different leaf tissues. Summer leaves underwent the most severe drought stress concomitantly with a reduction in radiation use efficiency upon being exposed to intense photooxidative stress, particularly during the central hours of the day. In parallel, a significant daily variation in both carotenoids and phenylpropanoids was observed. Our data suggest that the morning-to-midday increase in zeaxanthin derived from the hydroxylation of ß-carotene to sustain non-photochemical quenching and limit lipid peroxidation in thylakoid membranes. We observed substantial spring-to-summer and morning-to-midday increases in quercetin and luteolin derivatives, mostly in the leaf mesophyll. These findings highlight their importance as antioxidants, countering the drought-induced photooxidative stress. We concluded that seasonal and daily changes in photosynthetic and non-photosynthetic pigments may allow P. latifolia leaves to avoid irreversible photodamage and to cope successfully with the Mediterranean harsh climate.


Assuntos
Antioxidantes/farmacologia , Oleaceae/efeitos dos fármacos , Fenilpropionatos/farmacologia , Folhas de Planta/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Estações do Ano , Estresse Fisiológico , Carotenoides/farmacologia , Secas , Luz , Peroxidação de Lipídeos , Oleaceae/crescimento & desenvolvimento , Oleaceae/efeitos da radiação , Estresse Oxidativo , Fotossíntese , Pigmentação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação
6.
J Anat ; 237(5): 988-997, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32579747

RESUMO

Dorsal root ganglia (DRGs) host the somata of sensory neurons which convey information from the periphery to the central nervous system. These neurons have heterogeneous size and neurochemistry, and those of small-to-medium size, which play an important role in nociception, form two distinct subpopulations based on the presence (peptidergic) or absence (non-peptidergic) of transmitter neuropeptides. Few investigations have so far addressed the spatial relationship between neurochemically different subpopulations of DRG neurons and glia. We used a whole-mount mouse lumbar DRG preparation, confocal microscopy and computer-aided 3D analysis to unveil that IB4+ non-peptidergic neurons form small clusters of 4.7 ± 0.26 cells, differently from CGRP+ peptidergic neurons that are, for the most, isolated (1.89 ± 0.11 cells). Both subpopulations of neurons are ensheathed by a thin layer of satellite glial cells (SGCs) that can be observed after immunolabeling with the specific marker glutamine synthetase (GS). Notably, at the ultrastructural level we observed that this glial layer was discontinuous, as there were patches of direct contact between the membranes of two adjacent IB4+ neurons. To test whether this cytoarchitectonic organization was modified in the diabetic neuropathy, one of the most devastating sensory pathologies, mice were made diabetic by streptozotocin (STZ). In diabetic animals, cluster organization of the IB4+ non-peptidergic neurons was maintained, but the neuro-glial relationship was altered, as STZ treatment caused a statistically significant increase of GS staining around CGRP+ neurons but a reduction around IB4+ neurons. Ultrastructural analysis unveiled that SGC coverage was increased at the interface between IB4+ cluster-forming neurons in diabetic mice, with a 50% reduction in the points of direct contacts between cells. These observations demonstrate the existence of a structural plasticity of the DRG cytoarchitecture in response to STZ.


Assuntos
Diabetes Mellitus Experimental/patologia , Gânglios Espinais/ultraestrutura , Neuroglia/ultraestrutura , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gânglios Espinais/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glicoproteínas/metabolismo , Masculino , Camundongos , Neuroglia/enzimologia
7.
Molecules ; 25(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093396

RESUMO

Mediterranean plants biosynthesize high amounts of polyphenols, which are important health-promoting compounds. Leaf polyphenolic composition changes according to environmental conditions. Therefore, it is crucial to know the temporal variation in their production. This study aimed to: i) evaluate the monthly and daily changes in polyphenols of Phyllirea latifolia, Cistus incanus, and Pistacia lentiscus to identify their best harvesting moment, ii) verify the possible correlations between phenolic production and temperature and irradiation, iii) evaluate their antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical (OH)scavenging assays. The extracts of leaves harvested at 8:00, 13:00 and 18:00, in May, July, and October for two years were analysed by HPLC-DAD. Both "month" and "time of the day" affected the polyphenolic content in all species. July at 13:00 was the best harvesting moment for all polyphenolic classes of P. latifolia and only for some classes of C. incanus and P. lentiscus. Environmental parameters positively correlated with the polyphenols of C. incanus and P. latifolia, while the antioxidant capacity only varied in this last species, reaching the highest value in July. Results of the study allow to determine the balsamic time for each species. Moreover, the relationship between polyphenols and environmental data can be useful for the cultivation of these plants under controlled conditions.


Assuntos
Antioxidantes/química , Cistus , Fotoperíodo , Pistacia , Extratos Vegetais/química , Folhas de Planta , Polifenóis/química , Estações do Ano , Cistus/química , Cistus/crescimento & desenvolvimento , Pistacia/química , Pistacia/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento
8.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340536

RESUMO

Molecular mechanisms that are the base of the strategies adopted by Mediterranean plants to cope with the challenges imposed by limited or excessive solar radiation during the summer season have received limited attention. In our study, conducted on C. incanus plants growing in the shade or in full sunlight, we performed measurements of relevant physiological traits, such as leaf water potential, gas exchange and PSII photochemistry, RNA-Seq with de-novo assembly, and the analysis of differentially expressed genes. We also identified and quantified photosynthetic pigments, abscisic acid, and flavonoids. Here, we show major mechanisms regulating light perception and signaling which, in turn, sustain the shade avoidance syndrome displayed by the 'sun loving' C. incanus. We offer clear evidence of the detrimental effects of excessive light on both the assembly and the stability of PSII, and the activation of a suite of both repair and effective antioxidant mechanisms in sun-adapted leaves. For instance, our study supports the view of major antioxidant functions of zeaxanthin in sunny plants concomitantly challenged by severe drought stress. Finally, our study confirms the multiple functions served by flavonoids, both flavonols and flavanols, in the adaptive mechanisms of plants to the environmental pressures associated to Mediterranean climate.


Assuntos
Adaptação Biológica/efeitos dos fármacos , Cistus/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Complexo de Proteína do Fotossistema II/genética , Folhas de Planta/efeitos da radiação , RNA de Plantas/genética , Ácido Abscísico/metabolismo , Adaptação Biológica/genética , Antioxidantes/metabolismo , Clorofila/biossíntese , Cistus/genética , Cistus/metabolismo , Dano ao DNA , Reparo do DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Flavonoides/biossíntese , Transdução de Sinal Luminoso/genética , Região do Mediterrâneo , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Energia Solar , Luz Solar , Água/metabolismo , Zeaxantinas/biossíntese
9.
Cell Mol Neurobiol ; 38(4): 955-963, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29224183

RESUMO

Early-onset drinking during childhood or preadolescence is a serious social problem. Yet, most of the basic neurobiological research on the acute effects of ethanol has been carried out on adult or early postnatal animals. We studied the effect of alcohol exposure on the basic electrophysiological properties and cell viability of layer 5 pyramidal neurons from the somatosensory cortex of juvenile (P21-P23) C57BL/6N mice. After bath application of 50 mM ethanol to acute slices of the somatosensory cortex, no adverse effects were detected on cells survival, whereas the input resistance and firing rate of layer 5 neurons were significantly reduced. While the effect on the input resistance was reversible, the depressing effect on cell firing remained stable after 6 min of alcohol exposure. Ethanol application did not result in any significant change of mIPSC frequency, amplitude, and rise time. A slight increase of mIPSC decay time was observed after 6 min of ethanol exposure. The molecular mechanisms leading to these alterations and their significance for the physiology of the cerebral cortex are briefly discussed.


Assuntos
Dendritos/efeitos dos fármacos , Etanol/farmacologia , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia
10.
J Exp Bot ; 68(9): 2425-2437, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419325

RESUMO

Photosynthetic performance and the expression of genes involved in light signaling and the biosynthesis of isoprenoids and phenylpropanoids were analysed in green ('Tigullio', TIG) and red ('Red Rubin', RR) basil. The aim was to detect the physiological and molecular response mechanisms to high sunlight. The attenuation of blue-green light by epidermal anthocyanins was shown to evoke shade-avoidance responses with consequential effects on leaf morpho-anatomical traits and gas exchange performance. Red basil had a lower mesophyll conductance, partially compensated by the less effective control of stomatal movements, in comparison with TIG. Photosynthesis decreased more in TIG than in RR in high sunlight, because of larger stomatal limitations and the transient impairment of PSII photochemistry. The methylerythritol 4-phosphate pathway promoted above all the synthesis and de-epoxidation of violaxanthin-cycle pigments in TIG and of neoxanthin and lutein in RR. This enabled the green leaves to process the excess radiant energy effectively, and the red leaves to optimize light harvesting and photoprotection. The greater stomatal closure observed in TIG than in RR was due to enhanced abscisic acid (ABA) glucose ester deglucosylation and reduced ABA oxidation, rather than to superior de novo ABA synthesis. This study shows a strong competition between anthocyanin and flavonol biosynthesis, which occurs at the level of genes regulating the oxidation of the C2-C3 bond in the dihydro-flavonoid skeleton.


Assuntos
Dióxido de Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Ocimum basilicum/fisiologia , Fotossíntese , Folhas de Planta/química , Luz Solar , Metaboloma , Ocimum basilicum/genética , Transcriptoma
11.
Eur J Neurosci ; 44(3): 1952-62, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27285721

RESUMO

The nociceptive system of rodents is not fully developed and functional at birth. Specifically, C fibers transmitting peripheral nociceptive information establish synaptic connections in the spinal cord already during the embryonic period that only become fully functional after birth. Here, we studied the consequences of neonatal maternal deprivation (NMD, 3 h/day, P2-P12) on the functional establishment of C fiber-mediated neurotransmission in spinal cord and of pain-related behavior. In vivo recording revealed that C fiber-mediated excitation of spinal cord neurons could be observed at P14 only in control but not in NMD rats. NMD was associated with a strong alteration in the expression of growth factors controlling C nociceptor maturation as well as two-pore domain K+ channels known to set nociceptive thresholds. In good agreement, C-type sensory neurons from NMD animals appeared to be hypoexcitable but functionally connected to spinal neurons, especially those expressing TRPV1 receptors. In vivo and in vitro recordings of lamina II spinal neurons at P14 revealed that the NMD-related lack of C fiber-evoked responses resulted from an inhibitory barrage in the spinal cord dorsal horn. Eventually, C-type sensory-spinal processing could be recovered after a delay of about 10 days in NMD animals. However, animals remained hypersensitive to noxious stimulus up to P100 and this might be due to an excessive expression of Nav1.8 transcripts in DRG neurons. Together, our data provide evidence for a deleterious impact of perinatal stress exposure on the maturation of the sensory-spinal nociceptive system that may contribute to the nociceptive hypersensitivity in early adulthood.


Assuntos
Gânglios Espinais/fisiologia , Privação Materna , Nociceptividade , Dor Nociceptiva/fisiopatologia , Medula Espinal/fisiologia , Animais , Feminino , Gânglios Espinais/metabolismo , Masculino , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Nociceptores/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
12.
Plant Cell Environ ; 39(10): 2185-97, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27351898

RESUMO

Physiological, biochemical and morpho-anatomical traits that determine the phenotypic plasticity of plants under drought were tested in two Arundinoideae with contrasting habitats, growth traits and metabolism: the fast-growing Arundo donax, which also is a strong isoprene emitter, and the slow-growing Hakonechloa macra that does not invest on isoprene biosynthesis. In control conditions, A. donax displayed not only higher photosynthesis but also higher concentration of carotenoids and lower phenylpropanoid content than H. macra. In drought-stressed plants, photosynthesis was similarly inhibited in both species, but substantially recovered only in A. donax after rewatering. Decline of photochemical and biochemical parameters, increased concentration of CO2 inside leaves, and impairment of chloroplast ultrastructure were only observed in H. macra indicating damage of photosynthetic machinery under drought. It is suggested that volatile and non-volatile isoprenoids produced by A. donax efficiently preserve the chloroplasts from transient drought damage, while H. macra invests on phenylpropanoids that are less efficient in preserving photosynthesis but likely offer better antioxidant protection under prolonged stress.


Assuntos
Butadienos/metabolismo , Ácidos Cumáricos/metabolismo , Secas , Ecossistema , Hemiterpenos/metabolismo , Pentanos/metabolismo , Poaceae/metabolismo , Ácido Abscísico/metabolismo , Apigenina/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/ultraestrutura , Desidratação/metabolismo , Luteolina/metabolismo , Fotossíntese , Poaceae/crescimento & desenvolvimento , Poaceae/ultraestrutura , Água/metabolismo
13.
Physiol Plant ; 157(1): 54-68, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26537749

RESUMO

The ability to modify mesophyll conductance (gm ) in response to changes in irradiance may be a component of the acclimation of plants to shade-sun transitions, thus influencing species-specific distributions along light-gradients, and the ecological niches for the different species. To test this hypothesis we grew three woody species of the Oleaceae family, the evergreen Phillyrea latifolia (sun-requiring), the deciduous Fraxinus ornus (facultative sun-requiring) and the hemi-deciduous Ligustrum vulgare (shade tolerant) at 30 or 100% sunlight irradiance. We show that neither mesophyll conductance calculated with combined gas exchange and chlorophyll fluorescence techniques (gm) nor CO2 assimilation significantly varied in F. ornus because of sunlight irradiance. This corroborates previous suggestions that species with high plasticity for light requirements, do not need to undertake extensive reorganization of leaf conductances to CO2 diffusion to adapt to different light environments. On the other hand, gm steeply declined in L. vulgare and increased in P. latifolia exposed to full-sun conditions. In these two species, leaf anatomical traits are in part responsible for light-driven changes in gm , as revealed by the correlation between gm and mesophyll conductance estimated by anatomical parameters (gmA). Nonetheless, gm was greatly overestimated by gmA when leaf metabolism was impaired because of severe light stress. We show that gm is maximum at the light intensity at which plant species have evolved and we conclude that gm actually plays a key role in the sun and shade adaptation of Mediterranean species. The limits of gmA in predicting mesophyll conductance are also highlighted.


Assuntos
Aclimatação , Fraxinus/fisiologia , Oleaceae/fisiologia , Fraxinus/efeitos da radiação , Células do Mesofilo/fisiologia , Células do Mesofilo/efeitos da radiação , Oleaceae/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal/efeitos dos fármacos , Luz Solar
14.
Int J Mol Sci ; 17(8)2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27548139

RESUMO

Cistus incanus (Cistaceae) is a Mediterranean evergreen shrub. Cistus incanus herbal teas have been used as a general remedy in traditional medicine since ancient times. Recent studies on the antioxidant properties of its aqueous extracts have indicated polyphenols to be the most active compounds. However, a whole chemical characterisation of polyphenolic compounds in leaves of Cistus incanus (C. incanus) is still lacking. Moreover, limited data is available on the contribution of different polyphenolic compounds towards the total antioxidant capacity of its extracts. The purpose of this study was to characterise the major polyphenolic compounds present in a crude ethanolic leaf extract (CEE) of C. incanus and develop a method for their fractionation. Superoxide anion, hydroxyl and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assays were also performed to evaluate the antioxidant properties of the obtained fractions. Three different polyphenolic enriched extracts, namely EAC (Ethyl Acetate Fraction), AF1 and AF2 (Aqueos Fractions), were obtained from CEE. Our results indicated that the EAC, enriched in flavonols, exhibited a higher antiradical activity compared to the tannin enriched fractions (AF1 and AF2). These findings provide new perspectives for the use of the EAC as a source of antioxidant compounds with potential uses in pharmaceutical preparations.


Assuntos
Antioxidantes/química , Cistus/química , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis/química , Compostos de Bifenilo/química , Radical Hidroxila/química , Picratos/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
15.
J Neurosci ; 34(41): 13819-33, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25297108

RESUMO

The role of glial cell line-derived neurotrophic factor (GDNF) in nociceptive pathways is still controversial, as both pronociceptive and antinociceptive actions have been reported. To elucidate this role in the mouse, we performed combined structural and functional studies in vivo and in acute spinal cord slices where C-fiber activation was mimicked by capsaicin challenge. Nociceptors and their terminals in superficial dorsal horn (SDH; laminae I-II) constitute two separate subpopulations: the peptidergic CGRP/somatostatin+ cells expressing GDNF and the nonpeptidergic IB4+ neurons expressing the GFRα1-RET GDNF receptor complex. Ultrastructurally the dorsal part of inner lamina II (LIIid) harbors a mix of glomeruli that either display GDNF/somatostatin (GIb)-IR or GFRα1/IB4 labeling (GIa). LIIid thus represents the preferential site for ligand-receptor interactions. Functionally, endogenous GDNF released from peptidergic CGRP/somatostatin+ nociceptors upon capsaicin stimulation exert a tonic inhibitory control on the glutamate excitatory drive of SDH neurons as measured after ERK1/2 phosphorylation assay. Real-time Ca(2+) imaging and patch-clamp experiments with bath-applied GDNF (100 nM) confirm the presynaptic inhibition of SDH neurons after stimulation of capsaicin-sensitive, nociceptive primary afferent fibers. Accordingly, the reduction of the capsaicin-evoked [Ca(2+)]i rise and of the frequency of mEPSCs in SDH neurons is specifically abolished after enzymatic ablation of GFRα1. Therefore, GDNF released from peptidergic CGRP/somatostatin+ nociceptors acutely depresses neuronal transmission in SDH signaling to nonpeptidergic IB4+ nociceptors at glomeruli in LIIid. These observations are of potential pharmacological interest as they highlight a novel modality of cross talk between nociceptors that may be relevant for discrimination of pain modalities.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Nociceptividade/fisiologia , Receptores Pré-Sinápticos/fisiologia , Medula Espinal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Capsaicina/farmacologia , Gânglios Espinais/citologia , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Técnicas In Vitro , Masculino , Camundongos , Fibras Nervosas/fisiologia , Neurônios Aferentes/fisiologia , Nociceptividade/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores Pré-Sinápticos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
16.
New Phytol ; 207(3): 613-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25784134

RESUMO

The hypothesis was tested that isoprenoids and phenylpropanoids play a prominent role in countering photooxidative stress, following the depletion of antioxidant enzyme activity in plants exposed to severe drought stress under high solar irradiance and high temperatures. Platanus × acerifolia, a high isoprene-emitting species, was drought-stressed during summer (WS) and compared with unstressed controls (WW). Water relations and photosynthetic parameters were measured under mild, moderate, and severe drought stress conditions. Volatile and nonvolatile isoprenoids, antioxidant enzymes, and phenylpropanoids were measured with the same time course, but in four different periods of the day. Drought severely inhibited photosynthesis, whereas it did not markedly affect the photochemical machinery. Isoprene emission and zeaxanthin concentration were higher in WS than in WW leaves, particularly at mild and moderate stresses, and during the hottest hours of the day. The activities of catalase and ascorbate peroxidase steeply declined during the day, while the activity of guaiacol peroxidase and the concentration of quercetin increased during the day, peaking in the hottest hours in both WW and WS plants. Our experiment reveals a sequence of antioxidants that were used daily by plants to orchestrate defense against oxidative stress induced by drought and associated high light and high temperature. Secondary metabolites seem valuable complements of antioxidant enzymes to counter oxidative stress during the hottest daily hours.


Assuntos
Antioxidantes/metabolismo , Secas , Propanóis/metabolismo , Proteaceae/fisiologia , Estações do Ano , Estresse Fisiológico , Terpenos/metabolismo , Ácido Ascórbico/metabolismo , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Gases/metabolismo , Modelos Lineares , Malondialdeído/metabolismo , Região do Mediterrâneo , Estresse Oxidativo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Estômatos de Plantas/fisiologia , Análise de Componente Principal , Proteaceae/enzimologia , Quercetina/metabolismo , Volatilização , Água/química
17.
Implant Dent ; 24(1): 125-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25621560

RESUMO

PURPOSE: The aim of this study was to assess the accuracy of digital impressions for "all-on-four" implant rehabilitation. MATERIALS AND METHODS: Patients edentulous in one or both jaws were randomly selected for this study. Complete arch immediately loaded prostheses supported by 4 implants (2 axial and 2 tilted) were placed. Five hours after implant placement, screw-retained full-arch temporary prostheses were positioned. After 4 months, a digital scan body was used to finalize definitive prosthesis. Radiographic assessments were obtained immediately after surgery and at each follow-up visit. Bone level measurements were reported at 6 and 12 months, and bone loss between upright and tilted implants was compared. RESULTS: Fourteen definitive cast metal frameworks prosthesis were delivered to the patients. No implant dropout occurred. All prosthesis were screwed onto the dental implants, and x-ray examinations revealed a bar-implant connection accuracy. The implant survival rate was 100% for all positioned implants. No statistically significant differences (P > 0.05) in crestal bone loss between tilted and upright implants were detected. CONCLUSIONS: Digital impression creates an accurate physical model significantly improving efficiencies for the dental team and streamlining the workflow.


Assuntos
Implantação Dentária Endóssea/métodos , Implantes Dentários , Técnica de Moldagem Odontológica , Adulto , Idoso , Idoso de 80 Anos ou mais , Desenho Assistido por Computador , Planejamento de Prótese Dentária/métodos , Feminino , Humanos , Arcada Edêntula/cirurgia , Masculino , Pessoa de Meia-Idade , Boca Edêntula/cirurgia , Radiografia Panorâmica
18.
Plant Cell Environ ; 37(8): 1950-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24738622

RESUMO

Isoprene strengthens thylakoid membranes and scavenges stress-induced oxidative species. The idea that isoprene production might also influence isoprenoid and phenylpropanoid pathways under stress conditions was tested. We used transgenic tobacco to compare physiological and biochemical traits of isoprene-emitting (IE) and non-emitting (NE) plants exposed to severe drought and subsequent re-watering. Photosynthesis was less affected by drought in IE than in NE plants, and higher rates were also observed in IE than in NE plants recovering from drought. Isoprene emission was stimulated by mild drought. Under severe drought, isoprene emission declined, and levels of non-volatile isoprenoids, specifically de-epoxidated xanthophylls and abscisic acid (ABA), were higher in IE than in NE plants. Soluble sugars and phenylpropanoids were also higher in IE plants. After re-watering, IE plants maintained higher levels of metabolites, but isoprene emission was again higher than in unstressed plants. We suggest that isoprene production in transgenic tobacco triggered different responses, depending upon drought severity. Under drought, the observed trade-off between isoprene and non-volatile isoprenoids suggests that in IE plants isoprene acts as a short-term protectant, whereas non-volatile isoprenoids protect against severe, long-term damage. After drought, it is suggested that the capacity to emit isoprene might up-regulate production of non-volatile isoprenoids and phenylpropanoids, which may further protect IE leaves.


Assuntos
Metabolismo dos Carboidratos , Hemiterpenos/biossíntese , Nicotiana/fisiologia , Fotossíntese/fisiologia , Estresse Fisiológico , Terpenos/metabolismo , Ácido Abscísico/metabolismo , Butadienos , Secas , Pentanos , Plantas Geneticamente Modificadas/fisiologia , Nicotiana/genética , Xantofilas/metabolismo
19.
Ann Bot ; 114(3): 525-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25006177

RESUMO

BACKGROUND AND AIMS: A major challenge in plant ecophysiology is understanding the effects of multiple sub-optimal environmental conditions on plant performance. In most Mediterranean areas soil salinity builds up during the summer because of low availability of soil water coupled with hot temperatures. Although sunlight and soil salinity may strongly interact in determining a plant's performance, this has received relatively little attention. METHODS: Two-year-old seedlings of Fraxinus ornus were grown outdoors in pots during a Mediterranean summer in either 45 % (shaded plants) or 100 % (sun plants) sunlight irradiance and were supplied with either deionized water or deionized water plus 75 mm NaCl. Morpho-anatomical traits, water and ionic relations, gas exchange and photosystem II performance, concentrations of individual carotenoids, activity of antioxidant enzymes, concentrations of ascorbic acid and individual polyphenols were measured in leaves. Leaf oxidative stress and damage were estimated by in vivo analysis of stable free radicals and ultrastructural analyses. KEY RESULTS: Leaf concentrations of potentially toxic ions did not markedly differ in shaded or sun plants in response to salinity. Leaves of sun plants displayed superior water use efficiency compared with leaves of shaded plants, irrespective of salinity treatment, and had both better stomatal control and higher CO2 carboxylation efficiency than leaves of shaded plants. In the salt-treated groups, the adverse effects of excess midday irradiance were greater in shade than in sun plants. The activity of enzymes responsible for detoxifying hydrogen peroxide decreased in shaded plants and increased in sun plants as a result of salinity stress. In contrast, the activity of guaiacol peroxidase and the concentration of phenylpropanoids increased steeply in response to salinity in shaded plants but were unaffected in sun plants. CONCLUSIONS: It is concluded that salinity may constrain the performance of plants growing under partial shading more severely than that of plants growing under full sun during summer. The results suggest co-ordination within the antioxidant defence network aimed at detoxifying salt-induced generation of reactive oxygen species.


Assuntos
Antioxidantes/metabolismo , Fraxinus/metabolismo , Fotossíntese/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Luz Solar , Fraxinus/anatomia & histologia , Fraxinus/efeitos dos fármacos , Folhas de Planta/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Plântula/anatomia & histologia , Plântula/efeitos dos fármacos , Plântula/metabolismo
20.
J Craniofac Surg ; 25(3): 796-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24785746

RESUMO

PURPOSE: Root fracture is a combined injury of cementum, dentin, and pulp. Many of these traumas remain untreated, mistreated, or overtreated. It leads to a more complicated treatment in case of tooth loss. Many different treatment procedures, with a very changeable success rate, have been proposed for years to treat teeth with root fractures. The objective of the following clinical studies was to evaluate the clinical effectiveness of implants placed in fresh extraction sites to treat teeth with horizontal root fracture. METHODS: The study group included 25 patients (15 men and 10 women) between the ages of 20 and 65 years. After an initial examination and a treatment planning, all of the patients underwent periodontal treatment, which was deemed necessary to favor wound healing. All the 25 teeth were extracted because of horizontal root fracture located at the level of the middle third. The second-stage surgery was performed 6 months after the initial procedure. The following clinical parameters, presence or absence of mobility, presence or absence of pain, and presence or absence of suppuration, were evaluated in each patient at 6 and 12 months after implant placement. Radiographs were taken using the standard method to evaluate the marginal bone loss. RESULTS: The healing period was uneventful for all patients. All implants had osseointegrated. After 12 months, patients were asymptomatic and showed no signs of infection or bleeding when probed. CONCLUSIONS: On the basis of this study, implants placed right after tooth extraction are a valid treatment procedure, which induces predictable results as treatment of fractured teeth.


Assuntos
Implantação Dentária Endóssea/métodos , Extração Dentária , Fraturas dos Dentes/cirurgia , Raiz Dentária/lesões , Raiz Dentária/cirurgia , Adulto , Idoso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Cicatrização/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA